Skip to main content

Explore the credit course catalogue

5 Results

This course takes you on a journey into the exploration of how the brain shapes and enables our social and affective behaviors. We will examine key questions, such as how we learn from each other, when and in what ways social norms influence us, and how our communication and social decision-making unfold. 

Course - 7.5 ECTS

The course covers the theoretical background to the brain imaging methods sMRI, fMRI, PET, EEG and MEG, such as what aspects of the human brain's structure and function they register, and the operation principles of the imaging instruments. The coursed gives the student a good understanding in how the different methods are used within in academic research as well as within health care. The course also addresses how the imaging methods can be combined in multimodal analyses, and discusses the interplay between development of theory, instrumentation, method, and applications.
The course begins with an introduction to brain imaging methods within neuroscience. In separate course modules, the course then offers the student a deeper understanding of the different methods sMRI, fMRI, PET, EEG and MEG, as well as combining them in multimodal brain imaging. Finally, the students will deepen their knowledge on a topic of their choice in an individual study project.

Course - 7.5 ECTS

The purpose of the course is to introduce the topic of artificial intelligence (AI) in mental healthcare focused on theoretical development, ethics and practical application informed by a scientific approach.

Course - 3.0 ECTS

This course provides students with in-depth knowledge in the field of digital health from an entrepreneurship perspective. Domains of digital health, needs-based innovation including prototyping, usability and testing as well as data management, intellectual property, reimbursement, business models, ethics and future trends will be discussed and analyzed.

Course - 7.5 ECTS

Developmental biology lies at the heart of an effort to understanding complex biological systems. By studying how neural circuits are assembled we can extrapolate key aspects of their function as well as devise strategies for their repair. This course is given to deepen the understanding of how molecular and cellular mechanisms underlie neurobiological function and to widen the horizon of students within the strong Karolinska neuroscience community.

Contents of the course: The course will cover the main steps of development from neural stem cells to mature circuits, including the patterning of the neural plate and thus the origin of cell types, the interplay between intrinsic and extrinsic factors, gene regulation including epigenetics, neuro-glia interactions and the role of network activity in shaping the final circuits. Different molecular and tracing technologies, and model organisms will be covered. An important aspect of the course regards molecular technologies for labeling, transcriptional analysis, and genetic manipulation of defined neural populations. Connections between aberrant developmental processes and neurodevelopmental and neurological disorders will be discussed.

Course director

The course is given by four course-leaders: Gonçalo Castelo-Branco, Jens Hjerling-Leffler and Ulrika Marklund all at MBB and François Lallemend at Dept of Neuroscience.

Course - 1.5 ECTS