Skip to main content

Explore the credit course catalogue

5 Results

The course is practical and aims at teaching students how to:

  • Use the programming environment R and RStudio, which includes installation, how to handle errors, problem solve and access helper documents.
  • Use basic concepts of programming, such as data types, logical and arithmetic operators, if else conditions, loops and functions.
  • Use common R packages to perform basic statistical analysis (e.g., t-test, chi2-test, correlation) and visual presentation (e.g., boxplot, histogram and heat-map) of data in R.

The course is structured with the intent to gradually make students more autonomous in writing code. Starting by introducing a concept through a lecture, then providing formative quizzes and tasks relateed to the concept. This all leads up to a project (exam) where the student gets to combine multiple concepts into a project with the intent of solving a certain problem or displaying specific statistical tests of visual components. 

 

Course - 3.0 ECTS

This course will cover:

  • Intro to Jupyter Notebooks, IDEs
  • Intro Python (loops, variables, functions)
  • Core packages (Numpy, Pandas, Matplotlib, Seaborn)
  • Accessing folders (shell, OS)

The module presents a variety of fundamental models and methods from computational neuroscience. By solving daily exercises the students learn how to practically apply the acquired concepts. The course introduces the employed more
advanced mathematical tools embedded into the different topics. Further there will be a pre-course teaching the required programming skills in python.

Course - 7.5 ECTS
Course - 7.5 ECTS