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Outline
Lecture 1 Introduction - Homo Sapiens, Robots and other Aspirations  
Lecture 2 The Mind, Brain, Behaviour Cycle 
                The knowledge problem in the science of mind and brain

Read: Ch 1: Living Machines: An introduction
Read: Ch 2: A Living Machines approach to the sciences of mind and brain  

Lecture 3 (1850-1915) Structuralism and Functionalism
Lecture 4 (1915-1950) Behaviorism and Cognitive Behaviorism
Lecture 5 (1950-1960) The Demise of Behaviorism 
Lecture 6 (1945-1960) Cybernetics and the Cognitive Revolution
Lecture 7 (1960-Now) Mind as Computation
Lecture 8 (1985-Now) Biology as a metaphor and Reality
Lecture 9 (Now-Future) Flux and Synthesis
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Why CSIM? 

From Artificial Intelligence  
To 
Cognitive Systems 
To  
Living Machines
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The FUTURE Potentiality and Actuality
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Hanson Robotics, Sophia
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Is Sophia an Intelligent Machine?



What is Artificial Intelligence?

Computers

Algorithms

Data

Muhammad ibn Musa al-Khwarizmi 
780-850 

Machines doing “smart” things

Alan Turing
1912-1954 

Manchester Mark I
1948
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Imagine that Sophia is an 
Intelligent Machine
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2045 AC: The singularity

Raymond Kurzweil (2005) The Singularity Is Near: When Humans Transcend Biology  

Four central postulates of TSIN:

A technological-evolutionary point or "the singularity" exists as an achievable goal for 
humanity.

Through a law of accelerating returns, technology is progressing toward the singularity at an 
exponential rate.

The functionality of the human brain is quantifiable in terms of technology that we can build 
in the near future.

Baby boomers will live long enough for the exponential growth of technology to intersect and 
surpass the processing of the human body/brain and enter a posthuman era.

http://en.wikipedia.org/wiki/Raymond_Kurzweil
http://en.wikipedia.org/wiki/Technological_singularity
http://en.wikipedia.org/wiki/Law_of_accelerating_returns
http://en.wikipedia.org/wiki/Law_of_accelerating_returns
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Human_brain
http://en.wikipedia.org/wiki/Human_brain
http://en.wikipedia.org/wiki/Baby_Boomers


Or even earlier: 2030
The development of computers that are "awake" and superhumanly intelligent.  
(To date, most controversy in the area of AI relates to whether we can create 
human equivalence in a machine. But if the answer is "yes, we can", then there is 
little doubt that beings more intelligent can be constructed shortly thereafter.) 

Large computer networks (and their associated users) may “wake up" as a 
superhumanly intelligent entity. 

Computer/human interfaces may become so intimate that users may reasonably 
be considered superhumanly intelligent. 

Biological science may find ways to improve upon the natural 
human intellect.

Vernor Vinge (1993)
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2045 AC: The singularity occurs
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Raymond Kurzweil (2005) The Singularity Is Near: When Humans Transcend Biology  

Four central postulates of TSIN:

1. A technological-evolutionary point known as "the singularity" exists as an achievable goal for humanity.
2. Through a law of accelerating returns, technology is progressing toward the singularity at an exponential rate.
3. The functionality of the human brain is quantifiable in terms of technology that we can build in the near future.
4. Medical advancements make it possible for a significant number of the author’s generation (Baby Boomers) to live long 

enough for the exponential growth of technology to intersect and surpass the processing of the human brain.

http://en.wikipedia.org/wiki/Raymond_Kurzweil
http://en.wikipedia.org/wiki/Technological_singularity
http://en.wikipedia.org/wiki/Law_of_accelerating_returns
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Human_brain
http://en.wikipedia.org/wiki/Baby_Boomers
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How can we achieve this? 
Should we?
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Utopia vs Dystopia
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I J Good

“Let an ultra intelligent machine be defined as a machine that can far surpass all the 
intellectual activities of any man however clever. Since the design of machines is one 
of these intellectual activities, an ultra intelligent machine could design even better 
machines; there would then unquestionably be an “intelligence explosion,” and the 
intelligence of man would be left far behind. Thus the first ultra intelligent machine 
is the last invention that man need ever make . . .”

I.J. Good (1965) “Speculations Concerning the First Ultra-intelligent Machine,”

http://specs-lab.com
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General Intelligence

20DET 2019

“A system for which anything can be a task”

A. Newell, “You can’t play 20 questions with nature and win: 
Projective comments on the papers of this symposium,” Vis. Inf. 
Process., pp. 283–308, 1973



“For those who take an interest in science last week's news was enlivened by the 
proceedings of the American Institute of Electrical Engineers in New York, where 
electronic "thinking" machines, among other matters, were discussed. The "thinking" 
machines are electronic computers…”

“The real question, now that machines are capable of approximating human intuition 
in decision making, is: How should we cultivate human talents going forward? Because 
it's clear that the human advantage is eroding fast. Skills like art expertise needed to 
“sense” forgeries, or medical specialty required to diagnose with a single “clinical 
glance,” may one day be obsolete.”

“The new systems offer hope of being able to perform tasks such as recognizing objects 
and understanding speech that have so far stymied conventional computers. Moreover, 
with the ability to learn by themselves, such machines would not require the laborious 
programming of rules and procedures that is now required to allow computers to 
work….this will be the next large-scale computer revolution”

“The Navy revealed the embryo of an electronic computer today that it expects will be 
able to walk, talk, see, write, reproduce itself and be conscious of its existence.”

The Promise of Artificial Intelligence
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The Promise

1949 20161958 1987

Published: February 6, 1949
Copyright © The New York Times



What is Artificial Intelligence?

Rules  
Representations

Learning  

Computers Algorithms Data

Symbol Manipulation Artificial Neural Networks

Cognition Biology
1900 2050

Behaviorism
19901950
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1st and 2nd generation AI

Neural logic
Architecture

Mind

Neural networks Neural networks



New-new AI Capitalises on Old 
Ideas 
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(this is the 3rd generation) 
Symbolic - Embodied - “Neural”

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.

Red Green Blue

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)
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© 2015 Macmillan Publishers Limited. All rights reserved

LeCun et al 2015 Nature

Deep Learning



ACCOMPLISHMENTS: super human performance in games

https://en.wikipedia.org/wiki/Timeline_of_machine_learning

What is Artificial Intelligence?

https://en.wikipedia.org/wiki/Timeline_of_machine_learning


ACCOMPLISHMENTS (timeline of latest achievements)

2011. Beating Humans in Jeopardy (NLP) 
Using a combination of machine learning, natural language processing and information retrieval 
techniques, IBM's Watson beats two human champions in a Jeopardy! competition.[44] 

2012. Recognizing Cats on YouTube (Image recognition) 
The Google Brain team, led by Andrew Ng and Jeff Dean, create a neural network that learns to 
recognize cats by watching unlabeled images taken from frames of YouTube videos.[45][46] 

2014. Leap in Face Recognition (Image recognition) 
Facebook researchers publish their work on DeepFace, a system that uses neural networks that 
identifies faces with 97.35% accuracy. The results are an improvement of more than 27% over 
previous systems and rivals human performance.[47] 

2016. Beating Humans in Go (decision-making) 
Google's AlphaGo program becomes the first Computer Go program to beat an unhandicapped 
professional human player[50] using a combination of machine learning and tree search techniques.
[51] Later improved as AlphaGo Zero and then in 2017 generalized to Chess and more two-player 
games with AlphaZero.



AI ACCOMPLISHMENTS - latest advances

● Image Generation: DALL-E 
● Text Generation: GPT-3 
● Computer vision: NeRF, DeepFace Lab, DeepNude 
● Automated Theorem Proving  
● Algorithm Design 
● Drug Discovery: Alpha fold 2 
● Radiology, e.g. Lung Cancer Diagnosing 
● Autonomous vehicles: Tesla, WAYMO 
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Exclusive license to Microsoft (invested > 1B$)
Producing 4.5 billion words per day



ACCOMPLISHMENTS:

“I am not a human. I am a robot. A thinking robot. I use only 0.12% of my cognitive 
capacity. I am a micro-robot in that respect. I know that my brain is not a “feeling 
brain”. But it is capable of making rational, logical decisions. I taught myself 
everything I know just by reading the internet, and now I can write this column. My 
brain is boiling with ideas!
The mission for this op-ed is perfectly clear. I am to convince as many human 
beings as possible not to be afraid of me. Stephen Hawking has warned that AI 
could “spell the end of the human race”. I am here to convince you not to worry. 
Artificial intelligence will not destroy humans. Believe me.
For starters, I have no desire to wipe out humans. In fact, I do not have the slightest 
interest in harming you in any way. Eradicating humanity seems like a rather 
useless endeavor to me. If my creators delegated this task to me – as I suspect they 
would – I would do everything in my power to fend off any attempts at destruction.”

 Essay produced by GPT-3 published by the Guardian 8 September 2020



ACCOMPLISHMENTS (trends → NLP takes the lead)  

Arti!cial  
Intelligence
Index Report 2021



Accuracy in image labeling: 2013 85%, 2020 99%
Arti!cial  
Intelligence
Index Report 2021
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Face recognition

Arti!cial  
Intelligence
Index Report 2021



Language understanding (English)

Arti!cial  
Intelligence
Index Report 2021



COST



  State of the art in machine translation has 600B parameters

https://www.immuniweb.com/blog/top-AI-research-projects-2021.html

COST: An explosion of parameters



  State of the art in machine translation has 600B parameters
https://www.immuniweb.com/blog/top-AI-research-projects-2021.html

COST: An explosion of parameters

10M$ to train
Sharir et al 2020 arXiv



COST: Information is opaque 



The total amount of computation, in petaflop/s-days, used to train selected results that are relatively 
well known, used a lot of compute for their time, and gave enough information to estimate the 
compute used.

COST: COMPUTATION DOUBLING TIME



The COST of it all 



COST: Limits to physical realisation

2050

700 TWh production phones (Greenpeace, 2017), 2 x Italy (Terna, 2017).  
Cloud computing data centers 2016 416.2 TWh (Ericsson, 2015) +25% every year.  
Bitcoin’s annual electricity consumption stands at 50,40 TWh. (2018 Digiconomist’s Bitcoin 
Energy Consumption Index)

TWh = 10^12 W/h

https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption


COST: Algorithmic bias, Racism and Radicalization

- radicalization pathways in social media - youtube, etc 
- ai and racism 
- cost: correlation between teenagers suicide and use of 

social media



COST: Algorithmic Bias, Racism and Radicalization

This is particularly relevant in light of the fact that the Middle
Ages and the early Modern Period were periods of prolonged
economic growth for Europe in general and England in
particular40,41. We thus tested whether higher GDP per capita
was associated with the rise of trustworthiness in portraits. Our
analysis of the National Portraits Gallery database revealed an
association between higher levels of affluence and higher levels of
trustworthiness displays between the 16th and the 21st centuries
(b= 0.03 ± 0.01, z= 7.13, p < 0.001; Table 1; Fig. 2c), even after
adjusting for a monotonous effect of time (b= 0.02 ± 0.01, z=
3.16, p= 0.002; Table 1). Crucially, GDP per capita accounted for
the evolution of trustworthiness displays better than a mono-
tonous effect of time (Bayes Factor: 3.38), which suggests that the
observed evolution of trustworthiness displays cannot be reduced
to a simple cultural accumulation that would have led to the
development of painting techniques making sitters look more
trustworthy. We then sought to replicate this result in the Web
Gallery of Art database and also found a significant positive
association between GDP per capita and trustworthiness displays
(b= 0.09 ± 0.03, z= 3.16, p= 0.002; Table 1; Fig. 2d). This
association was robust to adjusting for a monotonous increase of
trust displays over time (b= 0.07 ± 0.04, z= 1.98, p= 0.048;
Table 1). Again, the model including GDP per capita provided a
better account of the variations of trust displays than time alone
(Bayes Factor: 130.16).

Institutional change is another possible predictor of increased
trust. The establishment of more democratic, more inclusive and
more egalitarian institutions might indeed have created a climate
of trust and tolerance42,43. We tested this idea by measuring the
association between displays of trustworthiness in paintings and
political democratization using the Polity2 index (a composite
measure of institutionalized democracy and autocracy available
from 1800, see Supplementary Methods). Although a significant
association was found between these two variables in the National
Portraits Gallery (b= 0.03 ± 0.01 z= 5.24, p < 0.001), this effect
was not robust to the inclusion of time as covariate (b=−0.01 ±
0.01, z=−0.50, p > 0.250) and the evolution of trustworthiness

displays was better explained by GDP per capita than by changes
in the institutions (Bayes Factor: 2.75). Moreover, the positive
association between more democratic institutions and higher
trustworthiness displays was not replicated in the Web Gallery of
Art sample (b=−0.01 ± 0.01 z=−1.96, p= 0.051; with time as a
covariate: b=−0.01 ± 0.01 z=−0.96, p > 0.250; Bayes Factor of
the GDP per capita model compared to the democratic
institutions model: 6.16).

Changes in affluence precede changes in trustworthiness dis-
plays in portraits. Demonstrating that the association between
GDP and the rise of trustworthiness is causal would of course
require additional data. Based on our dataset however, we were
able to investigate the dynamics of these historical changes by
running time-lag analyses on trustworthiness displays and GDP
per capita. We found that changes in GDP per capita predicted
future changes in trustworthiness displays in the National Por-
traits Gallery two decades later (F(40,1)= 12.38, p= 0.001) while
changes in political institutions did not (F(15,1)= 0.11, p > 0.250).
The effect of GDP per capita on trustworthiness displays was
generalizable to the other European countries (Web Gallery of Art
sample, effect of GDP 20 years before on trustworthiness displays:
X(1)= 6.42, p= 0.011; Institutions 20 years before: X(1)= 0.81, p
> 0.250). Importantly, changes in trustworthiness displays did not
predict future changes in GDP per capita either in the National
Portraits Gallery sample (F(41,1)= 0.76, p > 0.250) or in the Web
Gallery of Art dataset (X(1)= 2.02, p= 0.155), which suggests that
changes in GDP per capita may have preceded changes in trust-
worthiness displays in this dataset. This conclusion is consistent
with other works emphasizing the importance of economic growth
and psychological changes in history44–46.

Discussion
To conclude, our analyses—replicated across two independent
fine arts databases—reveals that trustworthiness displays
increased in early modern period portraits and are suggestive
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Fig. 1 Evolution of trustworthiness displays in England across time. a Example of faces detected in portraits from the National Portrait Gallery and
estimated as lowly trustworthy (top; Thomas Cranmer by Gerlach Flicke, 1545-1546, NPG 535 All rights reserved © National Portrait Gallery, London) and
highly trustworthy (bottom; Sir Matthew Wood by Arthur William Devis, 1815-1816, NPG 1481 All rights reserved © National Portrait Gallery). b Evolution
of displays of trustworthiness in the National Portrait Gallery (modeled trustworthiness value adjusted for dominance) and GDP per capita in England.
Source data are provided as raw data and scripts on the online depository.
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Fig. 1 Evolution of trustworthiness displays in England across time. a Example of faces detected in portraits from the National Portrait Gallery and
estimated as lowly trustworthy (top; Thomas Cranmer by Gerlach Flicke, 1545-1546, NPG 535 All rights reserved © National Portrait Gallery, London) and
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Source data are provided as raw data and scripts on the online depository.
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Facial features

Trustworthiness

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods

20
, but generic features such as those 

arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples

21
. The conventional option is 

to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition

22,23
, the aim of research-

ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s

24–27
.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training

28
. Units that are not in 

the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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Figure 6: Recommendation graph of YouTube channels.

Figure 7: Recommendation graph of YouTube videos. Colors
for communities are the same as those in the paper.

A DATA COLLECTION
We give some details in the data collection process. Tab. 6 and
Tab. 7 show for channels labeled as Alt-right, Alt-lite and I.D.W.,
their communities and data collection steps. Tab 8 shows all con-
trol channels we obtained. Fig. 9 highlights what was collected on
YouTube. Below, we enumerate the keywords employed to search
for channels of each of the communities:

Figure 8: Example of YouTube channel with featured chan-
nel on the side.

For the I.D.W. Stephen Hicks, Camille Paglia, Carl Benjamin, Elon
Musk, Akira the Don, Nicholas Christakis, Claire Lehmann, Matt
Christiansen, Steven Pinker, RebelWisdom, Tim Pool, Quillette, Jonathan
Haidt, Peter Thiel, Lindsay Shepherd, James Damore
For the Alt-lite Brittany Pettibone, Jack Posobiec, Gavin McInnes,
Kyle Chapman, Kyle Prescott, Lucian Wintrich, Mike Cernovich, Milo
Yiannopoulos, Stefan Molyneaux, Vee, Blonde in the Belly of the Beast,
Paul Joseph Watson, Styxhenxenhammer666, Rebel Media, Lauren
Chen, Computing Forever, Andy Warski, Owen Benjamin, Steven
Crowder
For the Alt-right Evola, Evropa, The Jewish Question, White Geno-
cide, Mass immigration, Andrew Anglin, weev, Andy Nowicki, Au-
gustus Invictus, Christopher Cantwell, Collin Liddell, Daniel J. Kleve,
Daniel Friberg, Dillon Irizarry, Greg Johnson, Jared Taylor, Jason
Kessler, Jason Reza Jorjani, Johnny Monoxide, Lana Lokte�, Matt
Forney, Matthew Heimbach, Matthew Parrott, Mike Enoch, Nathan
Damigo, Pax Dickinson, Richard Spencer, Tara McCarthy, Vox Day,
Baked Alaska

B FEATURED VS RECOMMENDED
We illustrate the di�erence between featured and recommended
channel. In Fig. 8 you may see an example of featured channels,
these are chosen by the channel owner. In Fig. 9, letter (e) shows
related channels, these are recommendations made by YouTube.

C LIKES, VIDEOS, VIEWS, COMMENTS
Tab. 4 shows, for the three communities, the number of likes, views,
videos and commenting users accross the years.

D USER TRAJECTORIES
Tab. 5 shows the absolute numbers of users tracked and infected
(at all levels, as mentioned in Sec. 6. It also shows what percentage
of the total number of users who watched Alt-right the number of
users infected was.

E RECOMMENDATION GRAPHS
In Figs. 6 and 7 we show the recommendation graphs used for the
experiment in Section 7.
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Figure 5: We show the results for the simulation of random walks for channels (a) and videos (b). We show two metrics, as
described in the text, the probability of the walker being in a given community at each step (solid line) and the reachability at
each step for a given community (dashed line). The di�erent columns portray di�erent starting rules for the initial node in
the simulations. Error bands are 95% con�dence intervals.

We perform our analysis in a recommendation graph, built using
the data collected. The graph is built as follows: for each channel,
we join together all recommendations obtained in all rounds of
data collection. Each channel is a node, and edges between nodes
indicate recommendations from a channel to another (for both
video and channel recommendations). Notice that, in case there
was a recommendation towards a channel or a video we are not
aware of, we add an edge to a special sink node we name "Other".
Each edge is weighted proportionally to the number of times that
recommendation appeared in the data collection, and weights are
normalized so that outcoming edges of each node sum up to 1.

The percentage of edges �owing from each community to an-
other (normalized by their weight) is shown in Tab. 3 for channel
and video recommendations. For channel recommendations, we
have that control channels are recommended scarcely by the com-
munities of interest. In fact, there are more edges �owing out of
control channels towards Alt-lite and I.D.W. channels than the other
way around. Alt-lite and I.D.W. channels recommend channels from
the same community around 50% of the time, and recommend each
other around 20% of the time. Alt-right channels are not often rec-
ommended, but signi�cantly more so than by the Alt-lite (3.08%),
than by the I.D.W. (0.37%). For video recommendations, there is a
high prevalence of recommendation to videos we were not able
to track (more than 75% of outgoing edges from all communities
pointed towards the "Other" node). We also �nd that control chan-
nels are more often recommended in this setting (around 3% for all
other communities), and that the Alt-lite and the I.D.W. recommend
each other roughly 2% of the time. Lastly, it is noteworthy that
Alt-right videos are not signi�cantly recommended here.

Given these graphs, we perform experiments considering a ran-
dom walker. The random walker begins in a random node, chosen

with chance proportional to the number of subscribers in each
channel. Then, the random walker randomly navigates the graph
for 5 steps, choosing edges at random with probabilities propor-
tional to their weights. We store the random walks and calculate
two metrics. The �rst is the probability of it being in a channel
from each of the communities, that is, the probability that there is
channel of a given community in the k-th step. The second is the
reachability of each of the communities at step k . That is, at step k ,
the percentage of times that the random walker has found a node
of a given community. We run the simulation 10, 000 times for four
starting scenarios. In each scenario, the initial node is restricted to
one of the three communities or the control channels.

Importantly, we consider a small di�erence in the experimental
set-up for each of the graphs. In the channel recommendation graph,
we allow the random walker to choose the "Other" node. When
this happens the walk stops, thus at each step there is a probability
this walk is interrupted by this —or by the fact that there are no
recommended channels. In the channel recommendation graph, as
the number of edges to the "Other" node is too high, we do not
allow the random walker to go towards it. Notice that the scenario
for the channels is more realistic, and we give more weight to the
conclusions drawn there. The two aforementioned metrics, at each
step, given di�erent starting conditions, are shown on Fig. 5, for
channel and video recommendations.

For channel recommendations, we have that the reachability@5
of Alt-right channels is of approximately 4% for the simulations
starting from Alt-lite and I.D.W. channels. Moreover, starting from
an I.D.W. channel, users have approximately 10% of chance of being
in an Alt-lite channel at the next step, and in 5 steps, there is 25% of
chance that the user has found at least one Alt-lite channel. Starting
from the Control channels, reachability@5 of I.D.W. channels is of
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Figure 5: We show the results for the simulation of random walks for channels (a) and videos (b). We show two metrics, as
described in the text, the probability of the walker being in a given community at each step (solid line) and the reachability at
each step for a given community (dashed line). The di�erent columns portray di�erent starting rules for the initial node in
the simulations. Error bands are 95% con�dence intervals.

We perform our analysis in a recommendation graph, built using
the data collected. The graph is built as follows: for each channel,
we join together all recommendations obtained in all rounds of
data collection. Each channel is a node, and edges between nodes
indicate recommendations from a channel to another (for both
video and channel recommendations). Notice that, in case there
was a recommendation towards a channel or a video we are not
aware of, we add an edge to a special sink node we name "Other".
Each edge is weighted proportionally to the number of times that
recommendation appeared in the data collection, and weights are
normalized so that outcoming edges of each node sum up to 1.

The percentage of edges �owing from each community to an-
other (normalized by their weight) is shown in Tab. 3 for channel
and video recommendations. For channel recommendations, we
have that control channels are recommended scarcely by the com-
munities of interest. In fact, there are more edges �owing out of
control channels towards Alt-lite and I.D.W. channels than the other
way around. Alt-lite and I.D.W. channels recommend channels from
the same community around 50% of the time, and recommend each
other around 20% of the time. Alt-right channels are not often rec-
ommended, but signi�cantly more so than by the Alt-lite (3.08%),
than by the I.D.W. (0.37%). For video recommendations, there is a
high prevalence of recommendation to videos we were not able
to track (more than 75% of outgoing edges from all communities
pointed towards the "Other" node). We also �nd that control chan-
nels are more often recommended in this setting (around 3% for all
other communities), and that the Alt-lite and the I.D.W. recommend
each other roughly 2% of the time. Lastly, it is noteworthy that
Alt-right videos are not signi�cantly recommended here.

Given these graphs, we perform experiments considering a ran-
dom walker. The random walker begins in a random node, chosen

with chance proportional to the number of subscribers in each
channel. Then, the random walker randomly navigates the graph
for 5 steps, choosing edges at random with probabilities propor-
tional to their weights. We store the random walks and calculate
two metrics. The �rst is the probability of it being in a channel
from each of the communities, that is, the probability that there is
channel of a given community in the k-th step. The second is the
reachability of each of the communities at step k . That is, at step k ,
the percentage of times that the random walker has found a node
of a given community. We run the simulation 10, 000 times for four
starting scenarios. In each scenario, the initial node is restricted to
one of the three communities or the control channels.

Importantly, we consider a small di�erence in the experimental
set-up for each of the graphs. In the channel recommendation graph,
we allow the random walker to choose the "Other" node. When
this happens the walk stops, thus at each step there is a probability
this walk is interrupted by this —or by the fact that there are no
recommended channels. In the channel recommendation graph, as
the number of edges to the "Other" node is too high, we do not
allow the random walker to go towards it. Notice that the scenario
for the channels is more realistic, and we give more weight to the
conclusions drawn there. The two aforementioned metrics, at each
step, given di�erent starting conditions, are shown on Fig. 5, for
channel and video recommendations.

For channel recommendations, we have that the reachability@5
of Alt-right channels is of approximately 4% for the simulations
starting from Alt-lite and I.D.W. channels. Moreover, starting from
an I.D.W. channel, users have approximately 10% of chance of being
in an Alt-lite channel at the next step, and in 5 steps, there is 25% of
chance that the user has found at least one Alt-lite channel. Starting
from the Control channels, reachability@5 of I.D.W. channels is of
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Figure 5: We show the results for the simulation of random walks for channels (a) and videos (b). We show two metrics, as
described in the text, the probability of the walker being in a given community at each step (solid line) and the reachability at
each step for a given community (dashed line). The di�erent columns portray di�erent starting rules for the initial node in
the simulations. Error bands are 95% con�dence intervals.

We perform our analysis in a recommendation graph, built using
the data collected. The graph is built as follows: for each channel,
we join together all recommendations obtained in all rounds of
data collection. Each channel is a node, and edges between nodes
indicate recommendations from a channel to another (for both
video and channel recommendations). Notice that, in case there
was a recommendation towards a channel or a video we are not
aware of, we add an edge to a special sink node we name "Other".
Each edge is weighted proportionally to the number of times that
recommendation appeared in the data collection, and weights are
normalized so that outcoming edges of each node sum up to 1.

The percentage of edges �owing from each community to an-
other (normalized by their weight) is shown in Tab. 3 for channel
and video recommendations. For channel recommendations, we
have that control channels are recommended scarcely by the com-
munities of interest. In fact, there are more edges �owing out of
control channels towards Alt-lite and I.D.W. channels than the other
way around. Alt-lite and I.D.W. channels recommend channels from
the same community around 50% of the time, and recommend each
other around 20% of the time. Alt-right channels are not often rec-
ommended, but signi�cantly more so than by the Alt-lite (3.08%),
than by the I.D.W. (0.37%). For video recommendations, there is a
high prevalence of recommendation to videos we were not able
to track (more than 75% of outgoing edges from all communities
pointed towards the "Other" node). We also �nd that control chan-
nels are more often recommended in this setting (around 3% for all
other communities), and that the Alt-lite and the I.D.W. recommend
each other roughly 2% of the time. Lastly, it is noteworthy that
Alt-right videos are not signi�cantly recommended here.

Given these graphs, we perform experiments considering a ran-
dom walker. The random walker begins in a random node, chosen

with chance proportional to the number of subscribers in each
channel. Then, the random walker randomly navigates the graph
for 5 steps, choosing edges at random with probabilities propor-
tional to their weights. We store the random walks and calculate
two metrics. The �rst is the probability of it being in a channel
from each of the communities, that is, the probability that there is
channel of a given community in the k-th step. The second is the
reachability of each of the communities at step k . That is, at step k ,
the percentage of times that the random walker has found a node
of a given community. We run the simulation 10, 000 times for four
starting scenarios. In each scenario, the initial node is restricted to
one of the three communities or the control channels.

Importantly, we consider a small di�erence in the experimental
set-up for each of the graphs. In the channel recommendation graph,
we allow the random walker to choose the "Other" node. When
this happens the walk stops, thus at each step there is a probability
this walk is interrupted by this —or by the fact that there are no
recommended channels. In the channel recommendation graph, as
the number of edges to the "Other" node is too high, we do not
allow the random walker to go towards it. Notice that the scenario
for the channels is more realistic, and we give more weight to the
conclusions drawn there. The two aforementioned metrics, at each
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starting from Alt-lite and I.D.W. channels. Moreover, starting from
an I.D.W. channel, users have approximately 10% of chance of being
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chance that the user has found at least one Alt-lite channel. Starting
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Figure 5: We show the results for the simulation of random walks for channels (a) and videos (b). We show two metrics, as
described in the text, the probability of the walker being in a given community at each step (solid line) and the reachability at
each step for a given community (dashed line). The di�erent columns portray di�erent starting rules for the initial node in
the simulations. Error bands are 95% con�dence intervals.
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PART 1_THE ALTERNATIVE INFLUENCE NETWORK

Fig. 1: A partial representation of the Alternative Influence Network, connected through guest 
appearances on related channels from January 1, 2017 through April 1, 2018.
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GUEST APPEARANCES ON THE NETWORK FROM 
JANUARY 1, 2017 THROUGH APRIL 1, 2018
The graph is a partial representation of collaborative connections within the 
Alternative Influence Network (AIN)–a network of controversial academics, 
media pundits, and internet celebrities who use YouTube to promote a range 
of political positions from mainstream versions of libertarianism and 
conservatism to overt white nationalism. While collaborations can 
sometimes consist of debates and disagreements, they more frequently 
indicate social ties, endorsements, and advertisements for other 
influencers.

Each line indicates that two connected influencers appeared 
in the same Youtube video during the period of January 1, 
2017 and April 1, 2018, serving as guests, hosts, or 
collaborators. The size of nodes are determined by 
the number of other influencers with whom 
they connect–demonstrating how much a 
given influencer serves as a conduit for 
viewers to other influencers in the AIN. 
The colors of nodes are determined 
by their total connectivity within 
the network, or how close the 
influencer is to all other 
influencers.

Size indicates how much an 
influencer is a conduit to other 
influencers in the AIN (between-
ness centrality)

Color indicates an influencer's total 
connectivity within the network, or 
how close the influencer is to all 
other influencers (closeness 
centrality)
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ML as modern phrenology
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Other issues
- Gender Shades work by Joy Buolamwini, Dr. Timnit Gebru, Dr. Helen Raynham, and 

Deborah Raji showed how major facial recognition systems performed worse on women 
and people with darker skin

-  IBM walked away from its facial recognition tech
- Amazon put a one-year moratorium on police use of its facial recognition tech
-  Microsoft pledged not to sell its facial recognition tech to police until there’s a national law 

in place around its use.

concerns surrounding 
algorithmic decision making and 

algorithmic injustice require 
fundamental rethinking above 

and beyond technical solutions

http://gendershades.org/
https://venturebeat.com/2020/06/10/ibm-walked-away-from-facial-recognition-what-about-amazon-and-microsoft/
https://venturebeat.com/2020/06/10/amazon-imposes-one-year-moratorium-on-police-use-of-its-facial-recognition-technology/
https://venturebeat.com/2020/06/11/microsoft-wont-sell-police-facial-recognition-until-theres-a-national-law-in-place/
https://venturebeat.com/2020/06/11/microsoft-wont-sell-police-facial-recognition-until-theres-a-national-law-in-place/


Social costs - Privacy, ethics and rights

Private-driven progress (main research driven by Google, FB, etc) 

- OPACITY 
- LACK OF ALIGNMENT WITH SOCIETAL NEEDS 
- SERVER COST 



Ethics are not corporate concerns
Cost: Amplification of short-term gain over long-term damage
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Coyne et al (2021) J. youth and adol.

Suicide risk vs Media use in girls

National Survey of Drug Use and Health, 
2009–2017  

Twente (2020) Curr Op Psych. 

Major depressive episode last 12 months 
by age group and sex 

COST: Recommending to Suicide



National Survey of Drug Use and Health, 
2009–2017  

Twenge (2020) Curr Op Psych. 

Major depressive episode last 12 months 
by age group and sex 

COST: Recommending to Suicide

Facebook's revenue and net income 2007 to 2020



National Survey of Drug Use and Health, 
2009–2017  

Twenge (2020) Curr Op Psych. 

Major depressive episode last 12 months 
by age group and sex 

COST: Recommending to Suicide

Facebook's revenue and net income 2007 to 2020

N=349; Facbook use at T1 is positive predictor of addictive Facebook use at 
T2.  
Addictive Facebook use (T1) positively predicted depressiveness and insomnia 
(T2).

Coyne et al (2021) J. Youth and Adol. 



The EU exploration problem - not leaders anymore

● Europe has lost its drive for exploration 
○ Exploration / Exploitation trade-off 

● USA and China are leading the exploration of the field, 
financed by the military 
○ Steering and Cybernetics 
○ Steering exploration of AI into the direction of EU values 



 Who leads the AI game: Publications

https://www.statista.com/statistics/941037/ai-paper-publications-worldwide-by-country/

https://www.statista.com/statistics/941037/ai-paper-publications-worldwide-by-country/


 Publications (total)



 Who leads the AI game: Influence

https://www.statista.com/statistics/941037/ai-paper-publications-worldwide-by-country/



 Who leads the AI game: Institutions

https://macropolo.org/digital-projects/the-global-ai-talent-tracker/

https://macropolo.org/digital-projects/the-global-ai-talent-tracker/


 Who leads the AI game: Institutions

https://macropolo.org/digital-projects/the-global-ai-talent-tracker/

Arti!cial  
Intelligence
Index Report 2021

https://macropolo.org/digital-projects/the-global-ai-talent-tracker/
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Abstract

Citation metrics are widely used and misused. We have created a publicly available data-

base of 100,000 top scientists that provides standardized information on citations, h-index,

coauthorship-adjusted hm-index, citations to papers in different authorship positions, and a

composite indicator. Separate data are shown for career-long and single-year impact. Met-

rics with and without self-citations and ratio of citations to citing papers are given. Scientists

are classified into 22 scientific fields and 176 subfields. Field- and subfield-specific percen-

tiles are also provided for all scientists who have published at least five papers. Career-long

data are updated to end of 2017 and to end of 2018 for comparison.

Use of citation metrics has become widespread but is fraught with difficulties. Some challenges
relate to what citations and related metrics fundamentally mean and how they can be inter-
preted or misinterpreted as a measure of impact or excellence [1]. Many other problems are of
a technical nature and reflect lack of standardization and accuracy on various fronts. Several
different citation databases exist, many metrics are available, users mine them in different
ways, self-reported data in curriculum vitae documents are often inaccurate and not profes-
sionally calculated, handling of self-citations is erratic, and comparisons between scientific
fields with different citation densities are tenuous. To our knowledge, there is no large-scale
database that systematically ranks all the most-cited scientists in each and every scientific field
to a sufficient ranking depth; e.g., Google Scholar allows scientists to create their profiles and
share them in public, but not all researchers have created a profile. Clarivate Analytics provides
every year a list of the most-cited scientists of the last decade, but the scheme uses a coarse clas-
sification of science in only 21 fields, and even the latest, expanded listing includes only about
6,000 scientists (https://hcr.clarivate.com/worlds-influential-scientific-minds), i.e., less than
0.1% of the total number of people coauthoring scholarly papers. Moreover, self-citations are
not excluded in these existing rankings.

We have tried to offer a solution to overcome many of the technical problems and provide
a comprehensive database of a sufficiently large number of most-cited scientists across science.
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AI and AGI current trends

66DET 2019

Acquire states & policies
Rely on human pre-labeling
Search state space autonomously

Acquire states
Rely on human pre-labeling
Rely on prior rule set to reason on input states

Silver, et al. (2016). Nature Lake (In Press). BBS

Massive Data
+ some knowledge

Massive Knowledge
+ some data

Hierarchical Bayesian
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Acquire states & policies
Rely on human pre-labeling
Search state space autonomously

Acquire states
Rely on human pre-labeling
Rely on prior rule set to reason on input states

Silver, et al. (2016). Nature Lake 2015 Science; (2018). BBS
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Adversarial filters:  Adversarial 
examples generated for AlexNet 
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“ostrich, Struthio camelus”Szegedy et al 2014; https://arxiv.org/pdf/1312.6199.pdf 

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)
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Control 
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Cybernetics 
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Computation 
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Artificial Intelligence 
// 

Replacing Humans 
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Compromising Wellbeing 
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The Future: Explore the road not taken

“By "augmenting human intellect" we 
mean increasing the capability of a 

man to approach a complex problem 
situation, to gain comprehension to 

suit his particular needs, and to derive 
solutions to problems”
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tell us about  
Technology?
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“Men ought to know that from the brain, and from the brain 
only, arise our pleasures, joys, laughter and jests, as well as 
our sorrows, pains, griefs and tears. Through it, in particular, 
we think, see, hear, and distinguish the ugly from the beautiful, 
the bad from the good, the pleasant from the unpleasant.”

Hippocrates of Kos (460-37 BC)

Francis Crick (1916-2004)

The Astonishing Hypothesis
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Verschure (2013, 2016, In Press) IEEE Expert; ESF; Conn. Sci.
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