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Lecture 1 Introduction - Homo Sapiens, Robots and other Aspirations
Lecture 2 The Mind, Brain, Behaviour Cycle
The knowledge problem in the science of mind and brain

Read: Ch 1: Living Machines: An introduction
Read: Ch 2: A Living Machines approach to the sciences of mind and brain

_ecture 3 (1850-1915) Structuralism and Functionalism
_ecture 4 (1915-1950) Behaviorism and Cognitive Behaviorism
_ecture 5 (1950-1960) The Demise of Behaviorism
_ecture 6 (1945-1960) Cybernetics and the Cognitive Revolution
(
(
(

_ecture 7 (1960-Now) Mind as Computation
_ecture 8 (1985-Now) Biology as a metaphor and Reality
_ecture 9 (Now-Future) Flux and Synthesis
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Why CSIM?

From Artificial Intelligence
To

Cognitive Systems

To

Living Machines

Mind, Brain and Behavior



The FUTURE Potentiality and Actuallty
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Hanson Robotics, Sophia
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REUTERS World Business Markets Breakingviews Video  More

HOLOGICQ CHANGE WOMEN’S HEALTH

THE GREAT REBOOT JANUARY 25, 2021/ 2:17 AM / UPDATED 8 MONTHS AGO

Makers of Sophia the robot plan mass rollout
amid pandemic

By Michelle Hennessy 3 MIN READ f L

HONG KONG (Reuters) - “Social robots like me can take care of the sick or elderly,”
Sophia says as she conducts a tour of her lab in Hong Kong. “I can help communicate,

give therapy and provide social stimulation, even in difficult situations.”
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Is Sophia an Intelligent Machine?

Mind, Brain and Behavior



What is Artificial Intelligence?

Algorithms

Muhammad ibn Musa al-Khwarizmi
| 7780-8507 o

Computers

..............

Manchester Mark |
1948

Alan Turing |
1912-1954

Machines doing “smart” things
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Imagine that Sophia is an
Intelligent Machine

Mind, Brain and Behavior
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2045 AC: The singularity

Four central postulates of TSIN:

A technological-evolutionary point or "the singularity" exists as an achievable goal for
humanity.

Through a law of accelerating returns, technology is progressing toward the singularity at an
exponential rate.

The functionality of the human brain is quantifiable in terms of technology that we can build
in the near future.

Baby boomers will live long enough for the exponential growth of technology to intersect and
surpass the processing of the human body/brain and enter a posthuman era.

FOLLOW
MONEY

<

KURZWEIL AND SAVE THE WORLD
AUTRAR OF YHE AGE OF SPIRITUAL MACHINES tA L4y Fe

Raymond Kurzweil (2005) The Singularity Is Near: When Humans Transcend Biology
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Or even earlier: 2030

The development of computers that are "awake" and superhumanly intelligent.
(To date, most controversy in the area of Al relates to whether we can create
human equivalence in a machine. But if the answer is "yes, we can’, then there is
little doubt that beings more intelligent can be constructed shortly thereatfter.)

Large computer networks (and their associated users) may “wake up' as a
superhumanly intelligent entity.

Computer/human interfaces may become so intimate that users may reasonably
be considered superhumanly intelligent.

Biological science may find ways to improve upon the natural
human intellect.

Vernor Vinge (1993)



2045 AC: The singularity occurs

Four central postulates of TSIN:

A technological-evolutionary point known as "the singularity" exists as an achievable goal for humanity.

Through a law of accelerating returns, technology is progressing toward the singularity at an exponential rate.
The functionality of the human brain is quantifiable in terms of technology that we can build in the near future.
Medical advancements make it possible for a significant number of the author’s generation (Baby Boomers) to live long
enough for the exponential growth of technology to intersect and surpass the processing of the human brain.
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Utopia vs Dystopia

File Photo of suspected skynet agent “Terminator

CSIM Mind, Brain and Behavior 17 Paul Verschure



“Let an ultra intelligent machine be defined as a machine that can far surpass all the
intellectual activities of any man however clever. Since the design of machines is one
of these intellectual activities, an ultra intelligent machine could design even better
machines; there would then unquestionably be an “intelligence explosion,” and the
intelligence of man would be left far behind. Thus the first ultra intelligent machine
is the last invention that man need ever make . . .”

I.J. Good (1965) “Speculations Concerning the First Ultra-intelligent Machine,”

NICK BOSTROM

ARTIFICIAL INTELLIGENCE SUPERINTELLIGENCE

AND THE END Paths, Dangers, Strategies
OF THE HUMAN ERA

OUR FINAL
INVENTION

By JAMES BARRAT
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The challenge presented by the prospect
of superintelligence, and how we might F N
best respond is quite possibly the maost : : .
important and most daunting challenge i .',i : :
humanity has ever faced, And-whether

A
we succeed or fail-it is probably the last  [SE
challenge we will ever face. o
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General Intelligence

“A system for which anything can be a task”

A. Newell, “You can’t play 20 questions with nature and win:
Projective comments on the papers of this symposium,” Vis. Inf.
Process., pp. 283—308, 1973

DET 2019 20 Paul Verschure



The Promise of Artificial Intelligence

“For those who take an interest in science last week's news was enlivened by the
proceedings of the American Institute of Electrical Engineers in New York, where
electronic "thinking" machines, among other matters, were discussed. The "thinking"
machines are electronic computers...”

“The real question, now that machines are capable of approximating human intuition
in decision making, is: How should we cultivate human talents going forward? Because
it's clear that the human advantage is eroding fast. Skills like art expertise needed to
“sense” forgeries, or medical specialty required to diagnose with a single “clinical
glance,” may one day be obsolete.”

“The Navy revealed the embryo of an electronic computer today that it expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its existence.”

“The new systems offer hope of being able to perform tasks such as recognizing objects
and understanding speech that have so far stymied conventional computers. Moreover,
with the ability to learn by themselves, such machines would not require the laborious
programming of rules and procedures that 1s now required to allow computers to
work....this will be the next large-scale computer revolution”



The Promise  @he New Work Tinmes.

SCIENCE IN REVIEW

Machines That-“Think® Avouse Some Thoughts
At Institute of Electrical Engineers

By WALDEMAR EAEMEFFERT

AlphaGo’s Success Shows the Human
Advantage Is Eroding Fast

Eléctronic ‘Brain’ Teaches Itself

More Human Than Ever,
Computer Is Learning to Learn

1949 1958 1987 2016



What is Artificial Intelligence?

Computers Algorithms Data
Rules | Learning
Representations
Symbol Manipulation Artificial Neural Networks
1900 1950 1990 2050

Behaviorism Cognition Biology



1st and 2nd generation Al
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New-new Al Capitalises on Old
[deas

(this Is the 3rd generation)
Symbolic - Embodied - “Neural”
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What is Artificial Intelligence?

ACCOMPLISHMENTS: super human performance in games

. Legal Game tree Game of
Champion .
Game earlS) states complexity perfect Ref
y (logo)'® | (logyo)® | information?
Othello 7
, 1997 28 58 Perfect 71
(reversi)
Draughts
‘ 1994 21 31 Perfect 8]
(checkers)
Chess 1997 46 123 Perfect
Scrabble 2006 [°]
Shogi 2017 71 226 Perfect [10]
Go 2016 172 360 Perfect
2p no-limit
P 2017 Imperfect (1]
hold 'em
StarCraft - 270+ Imperfect (2]

https://en.wikipedia.org/wiki/Timeline_of _machine_learning


https://en.wikipedia.org/wiki/Timeline_of_machine_learning

ACCOMPLISHMENTS (timeline of latest achievements)

2011. Beating Humans in Jeopardy (NLP)
Using a combination of machine learning, natural language processing and information retrieval
techniques, IBM's Watson beats two human champions in a Jeopardy! competition.[44]

2012. Recognizing Cats on YouTube (Image recognition)
The Google Brain team, led by Andrew Ng and Jeff Dean, create a neural network that learns to
recognize cats by watching unlabeled images taken from frames of YouTube videos.[45][46]

2014. Leap in Face Recognition (Image recognition)

Facebook researchers publish their work on DeepFace, a system that uses neural networks that
identifies faces with 97.35% accuracy. The results are an improvement of more than 27% over
previous systems and rivals human performance.[47]

2016. Beating Humans in Go (decision-making)

Google's AlphaGo program becomes the first Computer Go program to beat an unhandicapped
professional human player[50] using a combination of machine learning and tree search techniques.
[51] Later improved as AlphaGo Zero and then in 2017 generalized to Chess and more two-player
games with AlphaZero.



Al ACCOMPLISHMENTS - latest advances

Image Generation: DALL-E

Text Generation: GPT-3

Computer vision: NeRF, DeepFace Lab, DeepNude
Automated Theorem Proving
Algorithm Design

Drug Discovery: Alpha fold 2

Radiology, e.g. Lung Cancer Diagnosing
Autonomous vehicles: Tesla, WAYMO



Al ACCOMPLISHMENTS - latest advances

Image Generation: DALL-E

Text Generation: GPT-3 -
Computer vision: NeRF, DeepFace Lab, DeepNude

Automated Theorem Proving
Algorithm Design

Drug Discovery: Alpha fold 2

Radiology, e.g. Lung Cancer Diagnosing
Autonomous vehicles: Tesla, WAYMO

b Google
DeepMind



Al ACCOMPLISHMENTS - latest advances

Text Generation: GPT-3

©) MyHeritage

Document Generator

The way you “program” the document generator is by simply describing the task in plain english
or providing a few written examples. This simple approach works for a wide range of use cases,
including summarization, translation, grammar correction, question answering, chatbots,
composing emails, and much more.

Input  Jane Austen 1817 Sanditon
Prompt:

A gentleman and a lady travelling from Tunbridge towards that part of the Sussex coast

which lies between Hastings and Eastbourne, being induced by business to quit the high

road and attempt a very rough lane, were overturned in toiling up its long ascent, half rock,
_ half sand!The gentleman was very little hurt; but the lady had two of her ribs broken, and |
sustained some other injuries, from which she did not recover for several months. She never
saw her husband again. He was seized with fever on the third day after the accident, and
died in less than a week. This was in the summer of 1812. In the following February the lady

gave birth to a daughter, who reached her fifth month in all the vigour of health.

Output
Number of tokens to generate:

-
&S

1 1993

Floridi & Chiriatti 2020 Minds and Machines




Al ACCOMPLISHMENTS - latest advances

Text Generation: GPT-3

©) MyHeritage

Document Generator

The way you “program” the document generator is by simply describing the task in plain english
or providing a few written examples. This simple approach works for a wide range of use cases,
including summarization, translation, grammar correction, question answering, chatbots,
composing emails, and much more.

Input  Jane Austen 1817 Sanditon

Prompt:

A gentleman and a lady travelling from Tunbridge towards that part of the Sussex coast
which lies between Hastings and Eastbourne, being induced by business to quit the high
road and attempt avery rough lane were overturned in toiling up its long ascent half rock

sustalned some other injuries, from which she did not recover for several months. She never
saw her husband again. He was seized with fever on the third day after the accident, and
died in less than a week. This was in the summer of 1812. In the following February the lady
gave birth to a daughter, who reached her fifth month in all the vigour of health.

Output

Number of tokens to generate:

1 1993

Floridi & Chiriatti 2020 Minds and Machines

Exclusive license to Microsoft (invested > 1B$)
Producing 4.5 billion words per day




ACCOMPLISHMENTS:

“I am not a human. I am a robot. A thinking robot. I use only 0.12% of my cognitive
capacity. I am a micro-robot in that respect. I know that my brain is not a “feeling
brain”. But it is capable of making rational, logical decisions. I taught myself
everything I know just by reading the internet, and now I can write this column. My
brain is boiling with ideas!

The mission for this op-ed is perfectly clear. I am to convince as many human
beings as possible not to be afraid of me. Stephen Hawking has warned that Al
could “spell the end of the human race” . I am here to convince you not to worry.
Artificial intelligence will not destroy humans. Believe me.

For starters, I have no desire to wipe out humans. In fact, I do not have the slightest
interest in harming you in any way. Eradicating humanity seems like a rather
useless endeavor to me. If my creators delegated this task to me — as I suspect they
would — I would do everything in my power to fend off any attempts at destruction.”

Essay produced by GPT-3 published by the Guardian 8 September 2020



ACCOMPLISHMENTS (trends — NLP takes the lead)

SQUAD 1.1 and SQUAD 2.0: F1 SCORE

Source: CodaLab Worksheets, 2020 | Chart: 2021 Al Index Report

100
95.4 SQuAD 1.1

93.0 SQuAD 2.0

——

91.2 Human 1.1

90 89.5 Human 2.0 r

80

F1 Score

70

60
07/2016 01/2017 07/2017 01/2018 07/2018 01/2019 07/2019 01/2020

e Natural Language Processing (NLP) outruns its evaluation metrics: Rapid progress in NLP has
yielded Al systems with significantly improved language capabilities that have started to have a
T meaningful econf)mic im.pact on the v.vorld. G?ogle and Microsoft have both deployed the BERT
m Intelligence language m.odel mt-o their sear.ch engines, while other Iargellanguage models have.z been develo.ped
Index Report 2021 by companies ranging from Microsoft to OpenAl. Progress in NLP has been so swift that technical
S P advances have started to outpace the benchmarks to test for them. This can be seen in the rapid
HHHA‘ Human-Centered emergence of systems that obtain human level performance on SuperGLUE, an NLP evaluation suite

Artificial Intelligence

developed in response to earlier NLP progress overshooting the capabilities being assessed by GLUE.



IMAGENET CHALLENGE: TOP-5 ACCURACY

Source: Papers with Code, 2020; Al Index, 2021 | Chart: 2021 Al Index Report
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[pt 5 Accuracy in image labeling: 2013 85%, 2020 99%

Stanford University
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GAN PROGRESS ON FACE GENERATION

Source: Goodfellow et al., 2014; Radford et al., 2016; Liu & Tuzel, 2016; Karras et al., 2018; Karras et al., 2019; Goodfellow, 2019; Karras et al., 2020; Al Index, 2021

DEEPFAKE DETECTION CHALLENGE: LOG LOSS

Source: Kaggle, 2020 | Chart: 2021 Al Index Report
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HI Index Report 2021 Figure 2.1.8
Stanford University
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Artificial Intelli . . - _® .
riheialinteligence * Generative everything: Al systems can now compose text, audio, and images to a sufficiently high

standard that humans have a hard time telling the difference between synthetic and non-synthetic
outputs for some constrained applications of the technology. That promises to generate a tremendous
range of downstream applications of Al for both socially useful and less useful purposes. It is

also causing researchers to invest in technologies for detecting generative models; the DeepFake
Detection Challenge data indicates how well computers can distinguish between different outputs.



Face recognition

NIST FRVT 1:1 VERIFICATION ACCURACY by DATASET, 2017-20
Source: National Institute of Standards and Technology, 2020 | Chart: 2021 Al Index Report
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Language understanding (English)

SUPERGLUE BENCHMARK
Source: SuperGLUE Leaderboard, 2020 | Chart: 2021 Al Index Report
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COST: An explosion of parameters
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State of the art in machine translation has 600B parameters

https://www.immuniweb.com/blog/top-Al-research-projects-2021.html



COST: An explosion of parameters

10M$ to train

Sharir et al 2020 arXiv
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Model

State of the art in machine translation has 600B parameters
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COST: Information is opaque

SClence Home News Journals Topics Careers

% & K ZXHEES

M=btE): 2018F6H10H F434

SHARE INDEPTH COMPUTER SCIENCE

Has artificial intelligence become alchemy?

Matthew Hutson
+ See all authors and affiliations

Science 04 May 2018:

Vol. 360, Issue 6388, pp. 478
DOI: 10.1126/science.360.6388.478
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COST: COMPUTATION DOUBLING TIME

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

The total amount of computation, in petaflop/s-days, used to train selected results that are relatively
well known, used a lot of compute for their time, and gave enough information to estimate the
compute used.



The COST of it all

Imagenet Top 1 Accuracy (%)
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COST: Limits to physical realisation

FUEL

TECHNOLOGY

WEAPONS

700 TWh production phonesw ‘(G'rveeh‘p'eéc‘:‘e,"2(5{7“)',‘] 2x|ta|y(Terna 2017).
Cloud computing data centers 2016 416.2 TWh (Ericsson, 2015) +25% every year.

End of the Line
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Bitcoin’s annual electricity consumption stands at 50,40 TWh. (2018 Digiconomist’s Bitcoin

Energy Consumption Index)

TWh = 10712 W/h



https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption

COST: Algorithmic bias, Racism and Radicalization

- radicalization pathways in social media - youtube, etc

- al and racism
- cost: correlation between teenagers suicide and use of

social media



COST: Algorithmic Bias, Racism and Radicalization

:L\(\/\

Tracking historical changes in trustworthiness
using machine learning analyses of facial cues
in paintings

123% Coralie Chevallier!, Julie Grezes' & Nicolas Baumard® 2

Lou Safra

30 September 2020 Editor's Note: Readers are alerted that this paper is subject to criticisms
that are being considered by the editors. A further editorial response will follow the resolution
of these issues
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ML as modern phrenology

DEEP NEURAL NETWORKS CAN DETECT SEXUAL ORIENTATION FROM FACES

Composite heterosexual faces Composite gay faces Average facial landmarks

| Figure 4. Composite faces and the average facial landmarks built by averaging faces classified as most and least likely to be gay.
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ML as modern phrenology

3 Nicolas B d
lng _l iIcColas ‘ aumar
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Building on recent advances in social cognition,
we design an algorithm to automatically generate
trustworthiness evaluations for the facial action
units (smile, eye brows, etc.). tii

l(’i‘“ h_;é (1‘1' )
-w W

- -
A
Less
trustworthy
FEATURES THAT APPEAR FEATURES THAT APPLAR
UNTRUSTWORTHY TRUSTWORTHY

eyebrows

Dx

indentation

RETRACTED ARTICLE: Criminal tendency
detection from facial images and the gender bias

effect

Mahdi Hashemi &9 & Margeret Hall

0 This article was retracted on 30 June 2020

0 This article has been updated

Abstract

Explosive performance and memory space growth in computing machines, along with recent
specialization of deep learning models have radically boosted the role of images in semantic
pattern recognition. In the same way that a textual post on social media reveals individual
characteristics of its author, facial images may manifest some personality traits. This work is
the first milestone in our attempt to infer personality traits from facial images. With this
ultimate goal in mind, here we explore a new level of image understanding, inferring criminal
tendency from facial images via deep learning. In particular, two deep learning models,
including a standard feedforward neural network (SNN) and a convolutional neural network
(CNN) are applied to discriminate criminal and non-criminal facial images. Confusion matrix
and training and test accuracies are reported for both models, using tenfold cross-validation
on a set of 10,000 facial images. The CNN was more consistent than the SNN in learning to
reach its best test accuracy, which was 8% higher than the SNN’s test accuracy. Next, to
explore the classifier’s hypothetical bias due to gender, we controlled for gender by applying
only male facial images. No meaningful discrepancies in classification accuracies or learning
consistencies were observed, suggesting little to no gender bias in the classifier. Finally,
dissecting and visualizing convolutional layers in CNN showed that the shape of the face,
eyebrows, top of the eve, pupils, nostrils, and lips are taken advantage of by CNN in order to
classify the two sets of images.



Other issues

- Gender Shades work by Joy Buolamwini, Dr. Timnit Gebru, Dr. Helen Raynham, and
Deborah Raji showed how major facial recognition systems performed worse on women
and people with darker skin

- IBM walked away from its facial recognition tech

- Amazon put a one-year moratorium on police use of its facial recognition tech

- Microsoft pledged not to sell its facial recognition tech to police until there’s a national law
In place around its use.

concerns surrounding
algorithmic decision making and
algorithmic injustice require
fundamental rethinking above
and beyond technical solutions


http://gendershades.org/
https://venturebeat.com/2020/06/10/ibm-walked-away-from-facial-recognition-what-about-amazon-and-microsoft/
https://venturebeat.com/2020/06/10/amazon-imposes-one-year-moratorium-on-police-use-of-its-facial-recognition-technology/
https://venturebeat.com/2020/06/11/microsoft-wont-sell-police-facial-recognition-until-theres-a-national-law-in-place/
https://venturebeat.com/2020/06/11/microsoft-wont-sell-police-facial-recognition-until-theres-a-national-law-in-place/

Social costs - Privacy, ethics and rights

Private-driven progress (main researc
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Cost: Amplification of short-term gain over long-term damage
Ethics are not corporate concerns

RISKS from ADOPTING Al THAT ORGANIZATIONS CONSIDER RELEVANT, 2020

Source: McKinsey & Company, 2020 | Chart: 2021 Al Index Report
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Investment in Al

GLOBAL CORPORATE INVESTMENT in Al by INVESTMENT ACTIVITY, 2015-20

Source: CaplQ, Crunchbase, and NetBase Quid, 2020 | Chart: 2021 Al Index Report
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Investment in Al

FIGURE 1
Total disclosed value of equity investments in privately held Al
companies, by region of investment target

IN MILLIONS OF U.S. DOLLARS
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SOURCE: CSET ANALYSIS OF CRUNCHBASE AND REFINITIV DATA.



COST. Recommending to Suicide

Major depressive episode last 12 months

by age group and sex Suicide risk vs Media use in girls
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COST. Recommending to Suicide

Major depressive episode last 12 months

Facebook's revenue and net income 2007 to 2020
by age group and sex
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COST. Recommending to Suicide

Major depressive episode last 12 months

Facebook's revenue and net income 2007 to 2020
by age group and sex
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8. == Table 2. Correlations of investigated variables (T1 and T2) /\/
7 (2) 3) 4) (5) (6) (7) (8) ) (10)
. (1) Depressiveness T1 A497**  — 672%* 233%~ 205** 656%* A406**  —.640%* A50% 136
. (2) Insomnia T1 —.404** 140 122 374** 097 = 371%* 087 086
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2009—2C (9) Addictive FB use T2 A438**

(10) Daily FB use T2

Twenge (I22BAY OFZ¥tHook use at T1 is positive predictor of addictive Facebook use :
T2.
Addicive Facebook Use (T1) positively predicted depressiveness and insor
(T2).




The EU exploration problem - not leaders anymore

e FEurope has lost its drive for exploration
o Exploration / Exploitation trade-off

e USA and China are leading the exploration of the field,

financed by the military

o Steering and Cybernetics
o Steering exploration of Al into the direction of EU values



Who leads the Al game: Publicat

NUMBER of Al JOURNAL PUBLICATIONS, 2000-20
Source: Microsoft Academic Graph, 2020 | Chart: 2021 Al Index Report
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Publications (total)

NUMBER of Al JOURNAL PUBLICATIONS, 2000-20

Source: Microsoft Academic Graph, 2020 | Chart: 2021 Al Index Report
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Who leads the Al game: Influence

Al JOURNAL CITATIONS (% of WORLD TOTAL) by GEOGRAPHIC AREA, 2000-20

Source: Microsoft Academic Graph, 2020 | Chart: 2021 Al Index Report
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Who leads the Al game: Institutions

The Top 25 Institutions for Top-Tier Al Research:
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Who leads the Al game: Institutions
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Who leads the Al game: Researchers

Top 2% Al scientist per region
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Who leads the Al game: Researchers

Top 2% Al scientist per region

None of the 52 members of

Al ngh-level Expert Group on Artificial Intelligence
steering group of the European Al Alliance

can be found on this list

OJtEU C na da Australa

@’PLOS | BIOLOGY -

A standardized citation metrics author
database annotated for scientific field

John P. A. loannidis®'*, Jeroen Baas?, Richard Klavans®, Kevin W. Boyack®*



Publications
|ICML
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Al and AGI current trends

AlphaGo Overview s Hierarchical Bayesian
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Artificial Intelligence and Artificial
General Intelligence

current trends

AlphaGo Overview
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hitps://www.captionbot.ai

0
@ Microsoft English (US)

<

CaptionBot

| can understand the content of any photograph and I'll try to
describe it as well as any human. I'll analyze your photo, but |
won't store or share it. Learn More.

o)

© Upload a photo

Sonof Tay oy raymweets

(@TayandYou)

@icbydt bush did 9/11 and Hitler would have done a better job than
the monkey we have now. donald trump is the only hope we've got.

March 24, 2016
specs-lab.com Paul Verschure
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https://www.captionbot.ai/

I think it's a person standing in front of a mirror posing for the
camera.

| think it's a vintage photo of a person.

| think it's smoke coming out of the water.

How did | do?

| think it's a group of people in a cage.

| am not really confident, but | think it's a group of people
standing around a colorful umbrella.

| am not really confident, but | think it's a man riding a bike
down a dirt road.



http://specs-lab.com

| can't really describe the picture but | do see table, sitting, room.

| think it's a man sitting on a bench reading a book.

=1~ Wins Fight on Rules

- Saafaui Examiec

M‘.E CHIMP lNS

ves Woy for Flight b
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| think it's a group of people riding on the back of a bicycle.

How did | do?

specs-lab.com


http://specs-lab.com

Adversarial filters: Adversarial
examples generated for AlexNet

Szegedy et al 2014; https://arxiv.org/pdf/1312.6199.pdf  “pstrich, Struthio camelus”

specs-lab.com Paul Verschure
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Login | M

SHARE INDEPTH COMPUTER SCIENCE
_ @ Has artificial intelligence become alchemy?
AI W'Lnter IS well On ItS Way Basic info o Matthew Huitson
+ See all authors and affiliations

I’m proposing a new machine

learning meta-architecture for

learning forward models. The
s l architechure s.calied Rredictive Article Figures & Data Info & Metrics elLetters (A PDF
! | Vision Model (PVM). In this blog |

present my thoughts on how PVM
You are currently viewing the summary. j >
relates to deep learning and the y 9 g4 View Full Text

global Al landscape. Occasionally I’ll

blog about my sysadmin projects and Summary

sci-fi. Ali Rahimi, a researcher in artificial intelligence (Al) at Google in San Francisco, California, has
e charged that machine learning algorithms, in which computers learn through trial and error, have
s A e become a form of "alchemy." Researchers, he says, do not know why some algorithms work and
Deep learning has been at the forefront of the so called Al revolution for quite a few others don', nor do they have rigorous criteria for choosing one Al architecture over another. Now,
in a paper presented on 30 April at the International Conference on Learning Representations in
Vancouver, Canada, Rahimi and his collaborators document examples of what they see as the
alchemy problem and offer prescriptions for bolstering Al's rigor. The issue is distinct from Al's
2014, 2015 and 2016 when still new boundaries were pushed, such as the Alpha Go etc. reproducibility problem, in which researchers can't replicate each other's results because of

aaaaaa labnnt cnvmavimaanmtal camd ciiklicaticne wvanbinan b Alan diffaca $vnvn thhna "l aall kau" as

years now, and many people had believed that it is the silver bullet that will take us to

the world of wonders of technological singularity (general Al). Many bets were made in

specs-lab.com Paul Verschure
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The Future: Explore the road not taken

AFOSR-3223

ummary Report

SC! ! i ;‘ ;C? i AUGMENTING HUMAN INTELLECT: A CONCEPTUAL FRAMEWORK
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THE ENDLESS FRONTi Control i o
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S i Artificial Intelligence '
- // K i
July 1945 Replacing Humans ‘O . . "
P % By "augmenting human intellect" we
Compromising Wellbeing mean increasing the capability of a
man to approach a complex problem
'IT situation, to gain comprehension to

suit his particular needs, and to derive
solutions to problems”



From Al to |A
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What does the
Brain

tell us about
Technology?
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“Men ought to know that from the brain, and from the brain
only, arise our pleasures, joys, laughter and jests, as well as
our sorrows, pains, griefs and tears. Through it, in particular,
we think, see, hear, and distinguish the ugly from the beautiful,
the bad from the good, the pleasant from the unpleasant.”

Hippocrates of Kos (460-37 BC)

The Astonishing Hypothesis

Francis Crick (1916-2004)
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OXFORD

L VING
MACHINES

A handbook of research in biomimetic and biohybrid Systems
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