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The Cognitive Revolution
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Cognitive Science

Philosophy

Psychology

Artificial Intelligence

Linguistics

Anthropology

Neuroscience

After Gardner (1985) The mind’s new Science
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Artificial Intelligence Cybernetics



Transformation: The TOTE 
Unit

Plans and the Structure of Behavior 
Miller, Gallanter & Pribram (1960)

- Reflex is dead but what is the unit of 
behavior? 

- A plan is any hierarchical process in the 
organism that can control the order in 
which a sequence of operations is to be 
performed 
- Molar-Molecular units: Strategy and 
tactics of behavior 
- Execution: the plan is controlling the 
sequence of behavior 
- Image: all organized knowledge about 
the world and the self
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A simple behavioral plan

Plans and the Structure of Behavior 
Miller, Gallanter & Pribram (1960) 11



Cybernetics
• Postwar Cybernetics movement 
• The power of feedback 
• Formal analysis of real-world systems

fltr: W.Ross Ashby, Warren McCulloch, Grey Walter, and 
Norbert Wiener (from Latil, P de: Thinking By Machine, 1956)GW fixing a turtle
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Leonardo’s robot 1495: The robot is a knight, clad in German-Italian medieval armor, 
that is apparently able to make several human-like motions. These motions included 
sitting up, moving its arms, neck, and an anatomically correct jaw 

Leonardo’s Robot
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Automata of Vaucanson 

Duck, 1798
14



Brothers Droz-Neuchatel

Constructed between 1768 and 1774 by Pierre Jaquet-Droz, his son Henri-Louis (1752-1791), and Jean-Frederic 
Leschot (1746-1824) were The Writer (made of 6000 pieces), The Musician (2500 pieces) and The Draughtsman (2000 
pieces). By some considered as the first computers 15



Automata, such as the little 
moving figures of people or 
animals that emerge from cuckoo 
clocks and music boxes, were 
popular in the 1700's and 
machines capable of thinking 
were a subject for speculation 
long before the electronic 
computer was invented. 

Automata



L’Homme Machine (1747)
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Julien Offray de La Mettrie 
1709-1751

Humans are machines 
mental states depend on bodily actions 
The organization of matter at a high and complex level 
resulted in human thought. 

Psycho/Neuropathology depends on the body 
(Introspective/Physician) 
Determinism 
Hedonism drives behavior 
Humans have no “higher” morality than animals (e.g. 
humans torture) 

Inspires behaviorism and a reductionist approach 
towards mind.



Factum et Verum Convertitut 
 

Giambatista Vico (1668-1744) 
Truth and fact are exchangeable

“The criterion and rule of the true is to have made it. Accordingly, our clear and distinct idea of the mind 
cannot be a criterion of the mind itself, still less of other truths. For while the mind perceives itself, it does not 
make itself.”  (1710) De Italorum Sapientia.



Cybernetics and 
alternative movement: 
The power of feedback 

and construction
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Transforming a stimulus into a response

traces of external stimuli

traces of internal stimuli

Intervening variables

response variables

excitatory tendencies
inhibitory tendencies

reactive inhibition or primary negative 
drive IR

SER = (S HR × D × K × V ) − (S IR + IR) 

 reaction threshold

 reaction potential oscillation:
behavioral variability (Postulate XIII)

SHR = 1 − 10 

SD

CD

IS R

HS R

IR

D

SR

StR

A

S RO

S RL
US R

SE R

SE R

_S’

V
S

W

R
1: Transforming S into S’

2: Recover intervening variables

4: modulate by intervening variables
3: generate response tendencies

Essentials of Behavior (Hull 1943)

5: transformation in reaction variables

Drive (D) must satisfy drive condition (CD)

Derived Drive stimulus (SD)

prior receptor-effector connections 
that can terminate D (Postulate I)

Stimulus trace S’ with intensity V

V: stimulus intensity dynamism

Excitatory (H) and 
inhibitory (I) 
responses

Total excitatory 
drive

Effective excitatory 
drive

− .0305N
N = N trials

∆SER = ME −SER − (ME −SER)10−i 
M = Maximum reaction potential
i = animal dependent learning rate

The law of habit 
formation



Ross, T. (1935) Machines that think. A further statement. Psych Review
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This question was of interest to a handful of people in the 1940s who were the 
pioneers in a field that has become known as Cybernetics, the science of the 

regulation of systems.

Cybernetics = Regulation of 
Systems

Cybernetics is derived from the Greek word for steersman or helmsman, who 
provides the control system for a boat or ship.



From 1946 to 1953 there was a series of meetings to discuss feedback loops and 
circular causality in self-regulating systems. 

The meetings, sponsored by the Josiah Macy, Jr. Foundation, were interdisciplinary, 
attended by engineers, mathematicians, neurophysiologists, and others. 

Macy Foundation Meetings 
1946 - 1953
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Cybernetics coined in 1948

Norbert Weiner  
(the Father of Cybernetics)

1894 - 1964



Wiener: applied mathematician, biologist, and electrical engineer.  
He worked during World War II on the radar-guided anti-aircraft gun.

Wiener – A practical problem

He connected a special radar to the gun so that it was aimed 
automatically at the enemy aircraft.  After the gun was fired, the radar 
quickly determined the changing location of the plane and re-aimed the 
gun until the plane was shot down.



The anti-aircraft gun: the cybernetic principle of feedback.  
Feedback is information about the results of a process which is used to change 
the process.  
The radar provided information about the changes in location of the enemy 
airplane and this information was used to correct the aiming of the gun.

Feedback

A more familiar example of the use of feedback to regulate a system is the 
common thermostat for heating a room.

Cannon, W. , 
‘The Wisdom of the Body’, 1932



Reactive Layer: Behavioral Control as HomeostasisHomeostasis and behaviour / 
motivation

Cannon, W. , 
‘The Wisdom of the Body’, 1932

Homeostasis



The sensor provides a feedback loop of information that allows the system to 
detect a difference from the desired temperature of 68 degrees and to make 
a change to correct the error.  As with the anti-aircraft gun and the airplane, 
this system – consisting of the thermostat, the heater and the room – is said to 

regulate itself through feedback and is a self-regulating system.

Self Regulating System

The human body is one of the richest sources of examples of feedback that 
leads to the regulation of a system. For example, when your stomach is 
empty, information is passed to your brain.

Cannon, W. , 
‘The Wisdom of the Body’, 1932



The human body is such a marvel of self-regulation that early 
cyberneticians studied its processes and used it as a model to design 
machines that were self-regulating.  One famous machine called the 
homeostat was constructed in the 1940s by a British scientist, Ross Ashby.

Human Body and Cybernetics Studies

Just as the human body maintains a 37 degree 
temperature the homeostat could maintain the same 
electrical current, despite changes from the outside. 



Grey Walter – Self Regulating 
in Man and Animals



Elsie’s reactive behaviors

The Grey Walter picture archive 
http://www.ias.uwe.ac.uk/Robots/gwonline/
gwarkive.html

Elsie

Elsie approaches a light and  
circles around it (1950)
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Warren McCulloch was a key figure in enlarging the scope of cybernetics. 
Although a psychiatrist by training, McCulloch combined his knowledge of 
neurophysiology, mathematics, and philosophy to better understand a very 

complex system . . . 

Neurophysiology, 
Mathematics, and Philosophy



A logical calculus of the 
nervous system

• Ada Lovelace: A calculus of the nervous 
system 

• McCulloch & Pitts: The logic of neuronal 
circuits

=

and

or
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The Perceptron

37

Frank Rosenblatt (July 11, 1928 – July 11, 1971)

simulated on an IBM 704computer at Cornell Aeronautical Laboratory in 1957

T

https://en.wikipedia.org/wiki/IBM_704


Cybernetics
• Machine mind 
• Control theory 
• Embodiment 
• Sensory - motor mapping 
• Behavior

38



CyberSyn: Cybernetic Society

39Stafford Beer

Salvador Allende 
1908-1973



From Analytic Engine to 
Computer via 

the Turing Machine

40



“For the same are the thinking and the 
being”  

(Paramenidus, 480BC, Fragment V)

The senses are unreliable (hallucinations) 
Content of our thoughts are there all along….

ca. 520 BC ca. 450 BC

Resurrection of Rationalism



al-Kuwarizmi (c.830) 

Gave rise to the term ALGORITHM 

He wrote an extensive account of the Hindu system of numerals and numeration from which our current system evolved. 

ALGURISM: Writing numbers and performing calculations using Hindu numbers

Competitions were held between the abacists, who favoured the abacus for calculations, and the algorists, who
preferred pencil-and-paper calculations. 

31

6.9 Code not shown.

6.10 The basic physical state of these games is fairly easy to describe. One important thing
to remember for Scrabble and bridge is that the physical state is not accessible to all players
and so cannot be provided directly to each player by the environment simulator. Particularly
in bridge, each player needs to maintain some best guess (or multiple hypotheses) as to the
actual state of the world. We expect to be putting some of the game implementations online
as they become available.

6.11 One can think of chance events during a game, such as dice rolls, in the same way
as hidden but preordained information (such as the order of the cards in a deck). The key
distinctions are whether the players can influence what information is revealed and whether
there is any asymmetry in the information available to each player.
a. Expectiminimax is appropriate only for backgammon and Monopoly. In bridge and
Scrabble, each player knows the cards/tiles he or she possesses but not the opponents’.
In Scrabble, the benefits of a fully rational, randomized strategy that includes reasoning
about the opponents’ state of knowledge are probably small, but in bridge the questions
of knowledge and information disclosure are central to good play.

b. None, for the reasons described earlier.
c. Key issues include reasoning about the opponent’s beliefs, the effect of various actions
on those beliefs, and methods for representing them. Since belief states for rational
agents are probability distributions over all possible states (including the belief states of
others), this is nontrivial.

function MAX-VALUE( ) returns
if TERMINAL-TEST( ) then return UTILITY( )

for in SUCCESSORS( ) do
ifWINNER( ) = MAX
then MAX(v, MAX-VALUE( ))
else MAX(v, MIN-VALUE( ))

return

Figure S6.4 Part of the modified minimax algorithm for games in which the winner of the
previous trick plays first on the next trick.

6.12 (In the first printing, this exericse refers to WINNER( ); subsequent printings refer
to WINNER( ), denoting the winner of the trick just completed (if any), or null.) This question
is interpreted as applying only to the observable case.
a. The modification to MAX-VALUE is shown in Figure S6.4. If MAX has just won a trick,
MAX gets to play again, otherwise play alternates. Thus, the successors of a MAX node

The notion Algorithm was invented in the Arab world



Mind as Logic as Computation

Blaise Pascal
June 19, 1623 - August 19, 1662 (aged 39)

Pascal’s calculator or Pascaline

•Wilhelm Schickard (1592 –1635): the Speeding Clock 
•Gottfried Wilhelm Leibniz (1646 –1716) 
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Babbage: The Difference & Analytic Engine

"We may say most aptly that the Analytical Engine weaves algebraic patterns just as 
the Jacquard-loom weaves flowers and leaves."

 section of the “mill” of the  
Analytical Engine (above) and  
Difference engine (below).  
Reconstructed by his son Henry

Difference engine: compute tables 
Analytic engine: first programmable computer

Charles Babbage  
(1791-1871)

Augusta Ada Byron King,  
Countess of Lovelace  

(1815-1852)



Turing and the Turing 
Machine

(1912–1954)

In 1936, Turing introduced an 
abstract model for computation in 
 “On Computable Numbers, with an  
application to the Entscheidungsproblem”. 

Runs 2:46 marathon in qualifier for 1949 Olympics 



TM: The fundamental problem
“Could there exist, at least in principle, a 

definite method or process by which it could 
be decided whether any given mathematical 
assertion was provable” 

Turing 1936
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The Turing Machine

• 1: A tape which is divided into 
discrete cells (infinite memory).  

• 2: A head that can read and 
write symbols on the tape and 
move left and right.  

• 3: A state register that stores the 
state of the Turing machine  

• 4: An action table (or transition 
function) 



Church -Turing thesis

• Church-Turing thesis: “Any computer 
program in any of the conventional 
programming languages can be 
translated into a Turing machine, and 
any Turing machine can be translated 
into most programming languages, so 
the thesis is equivalent to saying that 
the conventional programming 
languages are sufficient to express any 
algorithm”

48



Digital Computers
• The 2nd world war added new 

technology and a new challenge: 
decoding

•Manchester Mark 1



Breaking the enigma code

Bletchley park
“Bombs”

Enigma: 1918 Arthur Scherbius

50
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Computers
All computers more or less based on the same 
basic design, the Von Neumann Architecture

First Draft of a Report on the EDVAC
by John von Neumann,

Contract No. W-670-ORD-4926,
Between the United States Army Ordnance Department

and the University of Pennsylvania Moore School of Electrical Engineering
University of Pennsylvania

June 30, 1945

John von Neumann (1903 - 1957)
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The Von Neumann Architecture

• Model for designing and building computers, based on the following 
three characteristics:

1.The computer consists of four main sub-systems:

I. Memory

II.ALU (Arithmetic/Logic Unit)

III.Control Unit

IV.Input/Output System (I/O)

2.Program is stored in memory during execution.

3.Program instructions are executed sequentially.
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von Neumann 
Architecture
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What does it do?
• Program Execution:

• PC is set to the address where the first 
program instruction is stored in memory.

• Repeat until HALT instruction or fatal error

  Fetch instruction

  Decode instruction

  Execute instruction

    End of loop



The computer metaphor implies 
questions and a research program

• Memory

• Logic

• CPU

• Architecture



The symbol manipulation 
paradigm 

 
The Physical Symbol System 

(PSS) hypothesis
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The paradigm: problem 
solving

The General Problem Solver (GPS): Newell, Shaw & Simon - 1959

57



The computer metaphor
• Memory 
• CPU 
• Architecture 
• Functionalism 
• Multi-instantiation

58



Cognitive Science

Philosophy

Psychology

Artificial Intelligence

Linguistics

Anthropology

Neuroscience

After Gardner (1985) The mind’s new Science



Transformation: The TOTE 
Unit

Plans and the Structure of Behavior 
Miller, Gallanter & Pribram (1960)

- Reflex is dead but what is the unit of 
behavior? 

- A plan is any hierarchical process in the 
organism that can control the order in 
which a sequence of operations is to be 
performed 
- Molar-Molecular units: Strategy and 
tactics of behavior 
- Execution: the plan is controlling the 
sequence of behavior 
- Image: all organized knowledge about 
the world and the self
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A tStandard Model of the 
Human Mind

Laird, Rosenbloom & Lebiere



A Standard Model of the 
Human Mind

13Standard Model of the Mind

A. Structure and Processing

B. Memory and Content

C. Learning

D. Perception and Motor

Standard Model (cont.)



Blocking the Perceptron

63



PSS: Newell & Simon 1976

T: Transduction, S: Symbol, E: Expression, O: Operator
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Functionalism
• Behaviorism ... attempts to explain behavior 

without any reference whatsoever to mental 
states and processes  

• Functionalism in the philosophy of mind is the 
doctrine that what makes something a 
mental state of a particular type does not 
depend on its internal constitution, but rather 
on the way it functions, or the role it plays, in 
the system of which it is a part. (http://
plato.stanford.edu/entries/functionalism/)

65

http://plato.stanford.edu/entries/functionalism/
http://plato.stanford.edu/entries/functionalism/


Theory of Mind: 
Functionalism

• Mental states are functional states and are not 
revealed in terms of intrinsic physical features. 

– What really matters is how mental state  instances are causally 
arranged: what cause them, and what they, in turn, cause. 

• Multiple realizability: mental states are not limited to 
a particular medium, they can be realized in multiple 
ways (i.e., computers) provided that the proper 
functional roles are realized (H. Putnam & J. Fodor) 

• Strong Artificial Intelligence and instantiation of 
intelligence 

• Brain-computer metaphor: mind as a Turing 
machine  



Some roots:
• Back to J. Dewey (1859 – 1952) 

– The Reflex Arc Concept in Psychology (1896) 

• H. Putnam (1926 - ) 
– “Minds and Machines” in Dimensions of the 

Mind (1960) machine-state functionalism, 
was the first to argue that minds are things 
that we can conceive  solely  in terms of input, 
output, and various functional relations



• Jerry Fodor (1935 - )  
– General multiple realizability as a critique to reductionism 
– The Modularity of Mind: An Essay on Faculty Psychology, 

MIT Press, 1983 
…not to be intended in Gall’s terms of physical localizability 

– Modules are innately specified systems that take in sensory 
inputs and yield necessary representations of them (i.e. visual 
system cognition, language, ….) 

• David Marr (1945-1980)  
– Visual system characterization 
– Theory of the Cerebellar Cortex (1969). The simple and 

regular cortical structure is interpreted as a simple but 
powerful memorizing  device for learning motor skills”  

– Levels of description: 

Some roots:





Functionalism
Things are defined by their functions 
Two ways to define function 

Function = inputs and outputs (machine functionalism) 
  
 e.g. mathematical function, e.g. +, -, x, / 
 2 x 3 = 6, when input is 2 and 3, output is 6 

Multiple realizability/ Multi-Instantiation:  Function can 
be realized in different materials or through 
different processes 

  



Functional definition of mind

• If x acts like a mind, it is a mind. 
• If, when compared to a mind, given similar 

inputs, x gives similar outputs, x is a mind. 
• If a computer can converse (take part in 

linguistic input and output exchanges/play the 
role of an intelligent conversational partner) just 
like a person, the computer is as intelligent as a 
person. It has a mind.



Good Old Fashioned AI 
GOFAI

• The paradigmatic expression of Rationalism

“For the same are the thinking and the 
being”  

(Paramenidus, 480BC, Fragment V)
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“Computing Machinery and 
Intelligence” (Mind, 1950)

• “I propose to 
consider the 
question, ‘Can 
machines think?’”

Alan M. Turing (1912–1954)



The imitation game or the Turing 
Test



The Imitation Game

Conversation…

Conversation…

Which is man 
and which is 
woman?

I’m the woman

Guess 
what? I’m 
the man



The Immitation Game

Conversation…

Conversation…

Which is 
machine and 
which is 
woman?

I’m the woman

Guess 
what? I’m 

the machine 
pretending to be 

a man



Predictions
• In 1950, Turing predicted that 50 years later it will be 

possible to program a computer with ~100 Mb 
memory to pass TT 70% of the time with 5 minute 
conversations. 

• It will be natural to speak of computers ‘thinking’. 
• “The machine may be used to help in making up its 

own programmes, or to predict the effect of 
alterations in its own structure.” 

• “We may hope that machines will eventually 
compete with men in all purely intellectual fields.”



Current TT status

• To date no computer has passed TT. 

• Loebner Prize: annual TT competition, prizes for passing TT 
and for “most human conversation”.  
– http://www.loebner.net/Prizef/loebner-prize.html 
– No prize awarded for passing TT yet. 

• Long Bets Foundation has registered a $10,000 bet b/w 
Mitch Kapor and Ray Kurzweil (Wired magazine, Issue 10.05 | May 2002): 
– Will a computer pass a TT by 2029?

http://www.loebner.net/Prizef/loebner-prize.html


Do computers think?

• Interview with Gary Kasparov’s advisor Frederic Friedel after Kasparov’s 
loss to Deep Blue: 
– MARGARET WARNER: All right. Let me bring Mr. Friedel back in here. 

Mr. Friedel, did Gary Kasparov think the computer was thinking? 
– FREDERIC FRIEDEL: Not thinking but that it was showing intelligent 

behavior. When Gary Kasparov plays against the computer, he has 
the feeling that it is forming plans; it understands strategy; it's trying to 
trick him; it's blocking his ideas, and then to tell him, now, this has 
nothing to do with intelligence, it's just number crunching, seems very 
semantic to him. He says the performance is what counts. I see it 
behaves like something that's intelligent. If you put--if you put a 
curtain up, he plays the game and then you open the curtain, and 
it's a human being. He says, ah, that was intelligent, and if it's a box, 

he says, no, that was just number crunching. It's the performance 
he's interested in.

http://www.pbs.org/newshour/bb/entertainment/jan-june97/big_blue_5-12.html

http://www.pbs.org/newshour/bb/entertainment/jan-june97/big_blue_5-12.html


“We can only see a short 
distance ahead, but we 

can see plenty there 
needs to be done.” 

-Alan M. Turing



• cognitive “revolution” 
• artificial intelligence 
• artificial life 
• connectionism 
• new AI, behavior based robotics

81

Metaphor, hype and illusions



Bloom County on Strong AI



Some problems of 
GOFAI

• Symbol grounding (Searle, 1980; Harnad, 1990)

• where does meaning come from?



Some problems of 
GOFAI

• Frame problem (McCarthy & Hayes, 1969; 
Pylyshyn, 1987)

• How can search be constrained to be feasible 
in a reasonable time window?



THE CHINESE ROOM



The Gedankenexperiment

• Searle, who knows 
no Chinese, is 
locked in a room 
with an enormous 
batch of Chinese 
script.  



The Gedankenexperiment

• Slips of paper with 
still more Chinese 
script come through 
a slot in the wall.

• He has to transcribe 
input to output 
following a rule 
book



The result

• But Searle is behaving 
just as a computer 
does, “performing 
computational 
operations on 
formally specified 
elements”

I don’t 
think, 

therefore I 
am not.

• Hence, manipulating formal symbols—which is just 
what a computer running a program does—is not 
sufficient for understanding or thinking.





An MTV history of AI



Some problems of 
GOFAI

• Situatedness (Simon, 1969; Suchman, 1987)

• Agents are in the world, which can serve as 
its own representation



Some problems of 
GOFAI

• Frame of reference problem (Clancey, 1989)

• Ontology of knowledge defined by the 
perspective of agent, designer or observer



Some problems of 
GOFAI

• Symbol grounding (Searle, 1980; Harnad, 1990)

• Frame problem (McCarthy & Hayes, 1969; 
Pylyshyn, 1987)

• Situatedness (Simon, 1969; Suchman, 1987)

• Frame of reference problem (Clancey, 1989)



AAAI 17

Constraints on Theories of M/B
Criteria for Unified Theories of Cognition 
(UTC).:  
1) Behave flexibly as a function of the 

environment;  
2) Exhibit adaptive (rational, goal-oriented) 

behavior;  
3) Operate in real-time;  
4) Operate in rich, complex, detailed 

environments;  
5) Use symbols and abstractions;  
6) Use language;  
7) Learn from the environment and from 

experience;  
8) Acquire capabilities through development;  
9) Operate autonomously, but within a social 

community; 
10)  Be self-aware and have a sense of self;  
11) Be realizable as a neural system;  
12) Be constructible by an embryological 

growth process;  
13) Arise through evolution  
(Newell, 1994, p.19).
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Constraints on Theories of M/B
Criteria for Unified Theories of Cognition 
(UTC).:  
1) Behave flexibly as a function of the 

environment;  
2) Exhibit adaptive (rational, goal-oriented) 

behavior;  
3) Operate in real-time;  
4) Operate in rich, complex, detailed 

environments;  
5) Use symbols and abstractions;  
6) Use language;  
7) Learn from the environment and from 

experience;  
8) Acquire capabilities through development;  
9) Operate autonomously, but within a social 

community; 
10)  Be self-aware and have a sense of self;  
11) Be realizable as a neural system;  
12) Be constructible by an embryological growth 

process;  
13) Arise through evolution  
(Newell, 1994, p.19).

1: Functional constraints (Psychology of mind):  
Level 1: Display autonomous adaptive and flexible 
real-time goal-oriented behavior in complex 
physical environments (Newell test: 1, 2, 3, 4, 7, 
10-sense of self); 
Level 2: Display autonomous adaptive and flexible 
real-time goal-oriented behavior in complex real-
world social environments including the use of 
symbols and language (Newell test: Level 1 + 5, 6, 
9, 10-self-aware); 
2: Structural constraints (Biology of embodied 
brain):  
Biological validity: be plausibly the product of 
biological evolution and be demonstrably 
constructible through neuro- and morphogenesis 
(Newell test: 11-13)  
Physical realizability: perform in real-time, in the 
real-world using resources (e.g. energy, 
computation) comparable to biological systems.  



“Solutions”

• Connectionism

• Behavior based AI / New AI



New AI: Subsumption Architecture

Cog

Rod Brooks (MIT, AI lab)

Intelligent behavior:
without explicit representations 

without explicit abstract reasoning

Intelligence is an emergent property of certain 
complex systems

Genghis



Braitenberg vehicles
• Construct complex behaviors from simple 

interactive rules

Braitenberg, 1984



Braitenberg behavior

1 sensor 1 motor
Love & Hate



Advantages of Reactive 
Agents

• Simplicity

• Economy (computation, communication)

• Computational tractability

• Robustness against failure

• Elegance



Problems of Reactive 
Agents

• Does direct sensing tell you enough?

• How about the non-local spatio-temporal organization of behavior? 
World models?

• How about unpredictability & learning? 

• How to be smarter than your designer?

• Believe in magic: How to harness emergence?

• Is it not just like Behaviorism? 

• No: worries about internal mechanism

• Is it not just like Cybernetics?

• Yes, minus the sophistication



The dogma’s of NEW 
AI

Situatedness and embodiment: ‘Real’ intelligence is 
situated in the world, not in disembodied 
systems such as theorem provers or expert 
systems

Intelligence, frame of reference and emergence: 
‘Intelligent’ behavior arises as a result of an 
agent’s interaction with its environment. Also, 
intelligence is ‘in the eye of the beholder’; it is not 
an innate, isolated property



The ant on the beach

Simon (1969) Sciences of the Artificial



The subsumption 
architecture

• A hierarchy of sense-act relations:

–Lower levels more primitive

–Lower layers have precedence

• Each behavior is a rather simple rule-like structure 
(finite state machine)

• Each behavior ‘competes’ with others to exercise 
control over the behaving agent



From the sense-think-act cycle  
to  

sense- ”think” - act hierarchies

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985

GOFAI

New AI



SA: Layered Control and encapsulation

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985

Avoid module

FSM



Finite-State Machine (FSM)

f = state update 
function 

s = internal state 
g = output function

Rosenschein and Kaelbling, 1994 “A Situated View of Representation and Control”, 1994



FSM is a building block for 
reactive agents

• It transforms well defined input states into 
simple actions following predefine rules

• As a result it reacts to and is controlled by its 
inputs

• Combined in the SA structure it promises 
intelligence behavior:

• Without central control

• Central representations

• Calibration

• Low bandwidth



Embodiment and 
morphological 
computation



65 km on one battery 
charge! 

• “Passive Dynamic Walker” 
“Ranger”, “IIT Legs”

Morphological computation and energy 
efficiency



Morphological computation 
and self-stabilization

Pfeifer et al., Science,16 Nov. 2007

exploitation of 
morphological and 

material 
characteristics of the 

physical system

! dramatic reduction of control complexity
! simplification of construction
! gain in efficiency (orders of magnitude)

" No clear separation between control 
and hardware  
(soft robotics)



The power of materials: The coffee-balloon 
gripper

! material passively adapts to shape of object 
! same control for all objects

! task distribution between 
brain (control), body 
(morphology, materials), and 
environment

! exploiting morphological and 
material characteristics 
(passive dynamics, 
deformability, elasticity)

! “outsourcing” of functionality 
to morphology and materials



“Soft Robotics”
Soft to touch Soft movement Soft interaction Emotions



Connectionism: The 
brain metaphor



A logical calculus of the 
nervous system

• Ada Lovelace: A calculus of the nervous 
system 

• McCulloch & Pitts: The logic of neuronal 
circuits

=

and

or

115



The Perceptron

116

Frank Rosenblatt (1928 - 1969) and his Mark I Perceptron 1958

Marvin Minsky & Seymour Papert

Pattern recognition with neural networks

Does not scale up

http://es.wikipedia.org/wiki/Marvin_Minsky
http://www.educadoresdigitales.org/2010/12/construccionismo-vs-instruccionismo-y.html


They do!

117

Marvin Minsky & Seymour Papert

Does not scale up

http://es.wikipedia.org/wiki/Marvin_Minsky
http://www.educadoresdigitales.org/2010/12/construccionismo-vs-instruccionismo-y.html


Fast forward:  
NETtalk (Sejnowski & Rosenberg 1987)

• Map characters to speech using error 
backpropagating network



Observation: 



Really?



The emperors new 
clothes

• The problem of priors

• You get what you put in



The emperors new 
clothes

• The problem of priors

• You get what you put in



How does the brain 
solve the mind-brain 

problem?



The mind/behavior/brain cycle



The mind/behavior/brain cycle

Rationalism

Empiricism
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Consciousness

Behavior;
the empty organism

Reason;
the disembodied mind

Metaphorical Biology;
the mindless body

Brain

1850

1915

1990NOW

Big Data

Cybernetics

1945

Behaviorism

Structuralism

Control;
embodied action

Cognitivism

Connectionism
New AI
Artificial Life

1950
1880

Verschure (2013, 2016, In Press) IEEE Expert; ESF; Conn. Sci.

Mind/Brain/Behavior Cycle

Wundt

Donders

Ashby, McCulloch, 
Grey Walters, Wiener

Turingvon Neumann

McCarty

Chomsky

1990

Brooks
Kauffman

Rumelhart

Sejnowski

Pavl Skinn

H

Wats

Tolm

DL/ML
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What keeps me 
up at night: 
Computation 
Hardware 
Power 
Integration 
Control 
……

http://specs-lab.com
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I J Good

“Let an ultraintelligent machine be defined as a machine that can far surpass all the 
intellectual activities of any man however clever. Since the design of machines is one 
of these intellectual activities, an ultraintelligent machine could design even better 
machines; there would then unquestionably be an “intelligence explosion,” and the 
intelligence of man would be left far behind. Thus the first ultraintelligent machine 
is the last invention that man need ever make . . .”

I.J. Good (1965) “Speculations Concerning the First Ultra-intelligent Machine,”

http://specs-lab.com
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“The function of science 
fiction is not always to 
predict the future but 

sometimes to prevent it.”  

Frank Herbert

http://specs-lab.com
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General Intelligence

131DET 2019

“A system for which anything can be a task”

A. Newell, “You can’t play 20 questions with nature and win: 
Projective comments on the papers of this symposium,” Vis. Inf. 
Process., pp. 283–308, 1973
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McCulloch Pitts

1943

Rosenblatt

1987

Turing

1948

Von Neumann

1945

Rumelhart

1958

1st and 2nd generation AI

Neural logic
Architecture

Mind

Neural networks Neural networks



New-new AI Capitalises on Old Ideas 

© Paul VerschureDET 2019

McCulloch Pitts

1943

Rosenblatt

1987

Turing

1948

Von Neumann

1945

Rumelhart

1958

(this is the 3rd generation) 
Symbolic - Embodied - “Neural”

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.

Red Green Blue

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Convolutions and ReLU

Max pooling

Max pooling

Convolutions and ReLU

Convolutions and ReLU

4 3 8  |  N A T U R E  |  V O L  5 2 1  |  2 8  M A Y  2 0 1 5

REVIEWINSIGHT
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LeCun et al 2015 Nature

Deep Learning
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https://www.captionbot.ai

Son of Tay
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Adversarial filters:  Adversarial 
examples generated for AlexNet 

Paul Verschurespecs-lab.com

“ostrich, Struthio camelus”Szegedy et al 2014; https://arxiv.org/pdf/1312.6199.pdf 

raw pixels could not possibly distinguish the latter two, while putting 
the former two in the same category. This is why shallow classifiers 
require a good feature extractor that solves the selectivity–invariance 
dilemma — one that produces representations that are selective to 
the aspects of the image that are important for discrimination, but 
that are invariant to irrelevant aspects such as the pose of the animal. 
To make classifiers more powerful, one can use generic non-linear 
features, as with kernel methods20, but generic features such as those 
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is 
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can 
all be avoided if good features can be learned automatically using a 
general-purpose learning procedure. This is the key advantage of 
deep learning. 

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which 
compute non-linear input–output mappings. Each module in the 
stack transforms its input to increase both the selectivity and the 
invariance of the representation. With multiple non-linear layers, say 
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details 
— distinguishing Samoyeds from white wolves — and insensitive to 
large irrelevant variations such as the background, pose, lighting and 
surrounding objects. 

Backpropagation to train multilayer architectures 
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable 
multilayer networks, but despite its simplicity, the solution was not 
widely understood until the mid 1980s. As it turns out, multilayer 
architectures can be trained by simple stochastic gradient descent. 
As long as the modules are relatively smooth functions of their inputs 
and of their internal weights, one can compute gradients using the 
backpropagation procedure. The idea that this could be done, and 
that it worked, was discovered independently by several different 
groups during the 1970s and 1980s24–27.  

The backpropagation procedure to compute the gradient of an 
objective function with respect to the weights of a multilayer stack 
of modules is nothing more than a practical application of the chain 

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be 
computed by working backwards from the gradient with respect to 
the output of that module (or the input of the subsequent module) 
(Fig. 1). The backpropagation equation can be applied repeatedly to 
propagate gradients through all modules, starting from the output 
at the top (where the network produces its prediction) all the way to 
the bottom (where the external input is fed). Once these gradients 
have been computed, it is straightforward to compute the gradients 
with respect to the weights of each module. 

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input 
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the 
next, a set of units compute a weighted sum of their inputs from the 
previous layer and pass the result through a non-linear function. At 
present, the most popular non-linear function is the rectified linear 
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). 
In past decades, neural nets used smoother non-linearities, such as 
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster 
in networks with many layers, allowing training of a deep supervised 
network without unsupervised pre-training28. Units that are not in 
the input or output layer are conventionally called hidden units. The 
hidden layers can be seen as distorting the input in a non-linear way 
so that categories become linearly separable by the last layer (Fig. 1). 

In the late 1990s, neural nets and backpropagation were largely 
forsaken by the machine-learning community and ignored by the 
computer-vision and speech-recognition communities. It was widely 
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly 
thought that simple gradient descent would get trapped in poor local 
minima — weight configurations for which no small change would 
reduce the average error. 

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a serious 
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and 
the surface curves up in most dimensions and curves down in the 

Figure 2 | Inside a convolutional network. The outputs (not the filters) 
of each layer (horizontally) of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom left; and RGB (red, green, 
blue) inputs, bottom right). Each rectangular image is a feature map 

corresponding to the output for one of the learned features, detected at each 
of the image positions. Information flows bottom up, with lower-level features 
acting as oriented edge detectors, and a score is computed for each image class 
in output. ReLU, rectified linear unit.
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AI and AGI current trends
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Acquire states & policies
Rely on human pre-labeling
Search state space autonomously

Acquire states
Rely on human pre-labeling
Rely on prior rule set to reason on input states

Silver, et al. (2016). Nature Lake (In Press). BBS

Massive Data
+ some knowledge

Massive Knowledge
+ some data

Hierarchical Bayesian
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Artificial Intelligence and Artificial 
General Intelligence  

current trends
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Acquire states & policies
Rely on human pre-labeling
Search state space autonomously

Acquire states
Rely on human pre-labeling
Rely on prior rule set to reason on input states

Silver, et al. (2016). Nature Lake 2015 Science; (2018). BBS

Hierarchical Bayesian

Wish for Human level 
competence
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We will all die because of AI
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Discover the Unknown Unknowns 
without external guidance

144

Epistemic Autonomy



sapiens5.net

Artificial Intelligence 
— 

Human Stupidity
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Anthropocene

Paul Verschurespecs-lab.comWaters et al. (2016). Science 351 (6269).

climateandsecurity.org/

Welcome to the
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1972 Pioneer 1; 1973 Pioneer 2

Karl Sagan

sapiens5.net

Homo sapiens is the problem
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From behavioural 
mechanics to teleology of 

experience



AI is mechanising 
Behaviorism
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Autonomy, Action and Responsibility

152

Actus.Reus: a physical movement
Mens rea: conscious intent causing the action 
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Dismantling  
the  

Puppeteer
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Synthetic Volition

Mastering
Synthetic
Autonomy
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