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Introduction



Optimization

Traditionally, optimization means minimizing using a cost function
f (x). Given the cost, we must find the cheapest point x∗ on the
function, or in other words,

x∗ = min
x∈R

f (x) (1)
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Functions

Functions are mathematical mappings. Consider for example, the
quadratic function, f (x) : R → R:

f (x) = x2 (2)
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Where is the minimum?
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In this case, we immediately see it’s at zero. To find it via an
iterative process, we require derivate information.

4



Summary

• Functions assign a value to each input.
• We seek an iterative way to find the smallest value.
• Doing so requires derivates.
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The derivative



The derivative

df (x)
dx = lim

h→0

f (x + h) − f (x)
h (3)
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Derivation of the parabola derivative

lim
h→0

(x + h)2 − x2

h = lim
h→0

x2 + 2xh + h2 − x2

h (4)

= lim
h→0

2xh + h2

h (5)

= lim
h→0

h(2x + h)
h (6)

= lim
h→0

2x + h (7)

= 2x (8)
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The derivate of a polynomial

What is the derivative of the function f (x) = xn?

df (x)
dx = nxn−1 (9)
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Summary

• A function is differentiable if the limit of the difference
quotient exists.

• For any point on a differentiable function, the derivative
provides a tangent slope.

• We will exclusively work with differentiable functions in this
course.
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Differentiation Rules [DFO20]

Product Rule: (g(x)h(x))′ = g ′(x)h(x) + g(x)h′(x) (10)

Quotient Rule: (g(x)
h(x) )′ = g ′(x)h(x) − g(x)h′(x)

(h(x))2 (11)

Sum Rule: (g(x) + h(x))′ = g ′(x) + h′(x) (12)
Chain Rule: (g(h(x)))′ = g ′(h(x))h′(x) (13)
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The logistic sigmoid [GBC16]

The sigmoid function σ(x) is a common activation function.

σ(x) = 1
1 + e−x (14)
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The derivative of the sigmoidal function

dσ(x)
dx = σ(x) · (1 − σ(x)) (15)
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Using the Chain Rule

How do we best differentiate f (x) = σ(ax + b)?

df (x)
dx = dσ(ax + b)

dx (16)

(17)

Chain Rule: (g(h(x)))′ = g ′(h(x))h′(x)

g(x) = σ(x), h(x) = ax + b (18)
⇒ σ(ax + b)(1 − σ(ax + b))(a) (19)

13



Optimization in a single dimension



Steepest descent

To find a minimum, we descent along the gradient, with n
denoting the step number, ϵ ∈ R the step size and df

dx the derivate
of f along x ∈ R:

xn = xn−1 − ϵ · df (x)
dx . (20)
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Steepest descent on the parabola

Working with the initial position x0 = 5 and a step size of ϵ = 0.1
for 25 steps leads to:
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Summary

• Following the negative derivative iteratively got us to the
minimum.

• At points of interest, the first derivate is zero.
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Optimization in many dimensions



The two-dimensional paraboloid

f (x1, x2) = x2
1 + x2

2 (21)
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The gradient

The gradient lists partial derivatives with respect to all inputs in a
vector. For a function f : Rn → R of n variables the gradient
∇f : Rn → Rn is defined as

∇f =


∂f
∂x1
∂f
∂x2...
∂f
∂xn

 . (22)
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Computing the gradient of the paraboloid

∇f (x1, x2) = ∇(x2
1 + x2

2 ) (23)

=
(

2x1

2x2

)
(24)
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Gradients at points

For every point p = (x1, x2, . . . , xn) we can write

∇f (p) =


∂f
∂x1

(p)
∂f
∂x2

(p)
...

∂f
∂xn

(p)

 . (25)

20



Gradients on the Paraboloid
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Gradient descent

Initial position: x0 = [2.9, −2.9],
Gradient step size: ϵ = 0.025

xn = xn−1 − ϵ · ∇f (xn−1) (26)

n denotes the step number, ∇ the gradient operator, and f (x) a
vector valued function.
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Gradient descent on the Paraboloid

Paraboloid Optimization

23



The Rosenbrock test function

f (x1, x2) = (a − x1)2 + b(x2 − x2
1 )2 (27)
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The gradient of the Rosenbrock function

Recall the Rosenbrock function:

f (x , y) = (a − x)2 + b(y − x2)2 (28)

∇f (x , y) =
(

−2a + 2x − 4byx + 4bx3

2by − 2bx2

)
(29)
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Gradients on the Rosenbrock function
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Gradient descent

Initial position: x0 = [0.1, 3.],
Gradient step size: ϵ = 0.01

xn = xn−1 − ϵ · ∇f (xn−1) (30)

n denotes the step number, ∇ the gradient operator, and f (x) a
vector valued function.
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Gradient descent on the Rosenbrock function

Rosenbrock Optimization
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Motivating Momentum

• The standard gradient descent approach gets stuck.
• What if we could somehow use a history of recent gradient

information?
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Gradient descent with momentum

Initial position: x0 = [0.1, 3.],
Gradient step size: ϵ = 0.01,
Momentum parameter: α = 0.8

vn = αvn−1 − ϵ · ∇f (xn−1) (31)
xn = xn−1 + vn (32)

v denotes the velocity vector, n the step number, ∇ the gradient
operator, and f (x) a vector-valued function. A good initial value
for v0 is 0.
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Gradient descent with momentum

Rosenbrock Optimization
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Summary

• Gradient descent works in high-dimensional spaces!
• On the Rosenbrock function, we required momentum to find

the minimum.
• Momentum adds the notion of inertia, which can help

overcome local minima in some cases.
• Just like in the 1d case, the gradient equals zero at local

minima and saddle points.
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Optional reading

• Mathematics for machine learning, [DFO20, Chapter 5, Vector
Calculus]

• Numerical optimization, [WN+99, Chapter 8.2, Automatic
Differentiation]

• Deep learning, [GBC16, Chapter 8, Optimization for Training
Deep Models]
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