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Introduction



Optimization

Traditionally, optimization means minimizing using a cost function
f(x). Given the cost, we must find the cheapest point x* on the
function, or in other words,

x* = )rzl_lﬁ f(x) (1)



Functions

Functions are mathematical mappings. Consider for example, the
quadratic function, f(x) : R — R:

f(x) = x? (2)
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Where is the minimum?

parabola

In this case, we immediately see it's at zero. To find it via an
iterative process, we require derivate information.



= Functions assign a value to each input.
= We seek an iterative way to find the smallest value.

= Doing so requires derivates.



The derivative



df(x) — m f(x+ h) —f(x)
dx h—0 h

(3)

parabola with derivative at two




Derivation of the parabola derivative

im (X+h)2—X2 — lim x2 + 2xh + h? — x? (4)
h—0 h  h—0 h
2xh + h?
N /Lino h (5)
. h(2x+ h)
N /Llno h (6)
= l|7im0 2x + h (7)
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The derivate of a polynomial

What is the derivative of the function f(x) = x"?

df(x)_ e
ax 1 ©)




= A function is differentiable if the limit of the difference

quotient exists.
= For any point on a differentiable function, the derivative
provides a tangent slope.

= We will exclusively work with differentiable functions in this

course.
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= g/(x) + H(x)
= g/ (h)H (x)

—_ |~ —~

~—

Product Rule: (g

~— [ —

Quotient Rule: (i

~—

Sum Rule: (

x)))

~—

h

~—

Chain Rule: (g

10



The logistic sigmoid [GBC16]

The sigmoid function o(x) is a common activation function.

1
o(x) = 14
)= 17— (14)
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The derivative of the sigmoidal function

709 — 60 (1~ 0(x) (15)
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Using the Chain Rule

How do we best differentiate f(x) = o(ax + b)?

df(x) do(ax + b)
dx dx (16)

Chain Rule: (g(h(x))) = g’(h(x))h (x)

g(x)=o0(x),h(x) =ax+b (18)
= o(ax + b)(1 — o(ax + b))(a) (19)
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Optimization in a single dimension




Steepest descent

To find a minimum, we descent along the gradient, with n

df

denoting the step number, € € R the step size and o the derivate
Ix

of f along x € R:

df (x)
dx

(20)

Xn = Xp—1 — €
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Steepest descent on the parabola

Working with the initial position xp = 5 and a step size of ¢ = 0.1
for 25 steps leads to:

Minimization of a parabola Derivative step sizes
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df (x)
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= Following the negative derivative iteratively got us to the

minimum.

= At points of interest, the first derivate is zero.
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Optimization in many dimensions




The two-dimensional paraboloid

f(x1,x) = x12 + x22 (21)

Paraboloid




The gradient

The gradient lists partial derivatives with respect to all inputs in a
vector. For a function f : R” — R of n variables the gradient
Vf :R" — R" is defined as

of
Ox1

vi=|%|. (22)

of
Oxn
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Computing the gradient of the paraboloid

Vf(x1,x2) = V(xZ + x3) (23)

2x1
_ (2) (24)
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Gradients at points

For every point p = (x1, X2, ..., Xn) We can write

2 (p)
f

vi = | =] (25)

9 (p)

20



Gradients on the Paraboloid

21



Gradient descent

Initial position: xp = [2.9, —2.9],
Gradient step size: ¢ = 0.025

Xp = Xp—1 — €+ VF(Xp-1) (26)

n denotes the step number, V the gradient operator, and f(x) a

vector valued function.
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Gradient descent on the Paraboloid

Paraboloid Optimization
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The Rosenbrock test function

f(x1,x0) = (a—x1)% + b(xo — x?)? (27)

Rosenbrock

Figure: Rosenbrock function with a=1 and b=100 . 24



The gradient of the Rosenbrock function

Recall the Rosenbrock function:

foy) = (a—xP+bly =P ()
—2a+ 2x — 4byx + 4bx*
Vf(x,y)=< e X) (29)
y — X
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Gradient descent

Initial position: xp = [0.1,3.],
Gradient step size: ¢ = 0.01

Xp = Xp—1 — €+ VF(Xp-1) (30)

n denotes the step number, V the gradient operator, and f(x) a

vector valued function.
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Gradient descent on the Rosenbrock function

Rosenbrock Optimization
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Motivating Momentum

= The standard gradient descent approach gets stuck.

= What if we could somehow use a history of recent gradient
information?
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Gradient descent with momentum

Initial position: xp = [0.1,3.],
Gradient step size: ¢ = 0.01,
Momentum parameter: o = 0.8

Vp=av,_1 —€- Vf(xp_1) (31)
Xp = Xp—1 + Vp (32)

v denotes the velocity vector, n the step number, V the gradient
operator, and f(x) a vector-valued function. A good initial value

for vg is 0.
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Gradient descent with momentum

Rosenbrock Optimization
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= Gradient descent works in high-dimensional spaces!

= On the Rosenbrock function, we required momentum to find

the minimum.

= Momentum adds the notion of inertia, which can help

overcome local minima in some cases.

= Just like in the 1d case, the gradient equals zero at local
minima and saddle points.
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Optional reading

= Mathematics for machine learning, [DFO20, Chapter 5, Vector
Calculus]

= Numerical optimization, [WN+99, Chapter 8.2, Automatic
Differentiation]

= Deep learning, [GBC16, Chapter 8, Optimization for Training
Deep Models]
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