
Optimization for Machine Learning

Moritz Wolter
September 12, 2023

High-Performance Computing and Analytics Lab, Uni Bonn



Overview

Introduction

The derivative

Optimization in a single dimension

Optimization in many dimensions

1



Introduction



Optimization

Traditionally, optimization means minimizing using a cost function
f (x). Given the cost, we must find the cheapest point x∗ on the
function, or in other words,

x∗ = min
x∈R

f (x) (1)

2



Functions

Functions are mathematical mappings. Consider for example, the
quadratic function, f (x) : R → R:

f (x) = x2 (2)

−3 −2 −1 0 1 2 3
0

2

4

6

8

x

y
parabola

3



Where is the minimum?

−3 −2 −1 0 1 2 3
0

2

4

6

8

x

y

parabola

In this case, we immediately see it’s at zero. To find it via an
iterative process, we require derivate information.

4



Summary

• Functions assign a value to each input.
• We seek an iterative way to find the smallest value.
• Doing so requires derivates.

5



The derivative



The derivative

df (x)
dx = lim

h→0

f (x + h) − f (x)
h (3)

−3 −2 −1 0 1 2 3

0

2

4

6

8

parabola with derivative at two

6



Derivation of the parabola derivative

lim
h→0

(x + h)2 − x2

h = lim
h→0

x2 + 2xh + h2 − x2

h (4)

= lim
h→0

2xh + h2

h (5)

= lim
h→0

h(2x + h)
h (6)

= lim
h→0

2x + h (7)

= 2x (8)

7



The derivate of a polynomial

What is the derivative of the function f (x) = xn?

df (x)
dx = nxn−1 (9)

8



Summary

• A function is differentiable if the limit of the difference
quotient exists.

• For any point on a differentiable function, the derivative
provides a tangent slope.

• We will exclusively work with differentiable functions in this
course.

9



Differentiation Rules [DFO20]

Product Rule: (g(x)h(x))′ = g ′(x)h(x) + g(x)h′(x) (10)

Quotient Rule: (g(x)
h(x) )′ = g ′(x)h(x) − g(x)h′(x)

(h(x))2 (11)

Sum Rule: (g(x) + h(x))′ = g ′(x) + h′(x) (12)
Chain Rule: (g(h(x)))′ = g ′(h(x))h′(x) (13)

10



The logistic sigmoid [GBC16]

The sigmoid function σ(x) is a common activation function.

σ(x) = 1
1 + e−x (14)

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x

y
logistic sigmoid

11



The derivative of the sigmoidal function

dσ(x)
dx = σ(x) · (1 − σ(x)) (15)

−10 −5 0 5 10
0

5 · 10−2

0.1

0.15

0.2

0.25

x

y

12



Using the Chain Rule

How do we best differentiate f (x) = σ(ax + b)?

df (x)
dx = dσ(ax + b)

dx (16)

(17)

Chain Rule: (g(h(x)))′ = g ′(h(x))h′(x)

g(x) = σ(x), h(x) = ax + b (18)
⇒ σ(ax + b)(1 − σ(ax + b))(a) (19)

13



Optimization in a single dimension



Steepest descent

To find a minimum, we descent along the gradient, with n
denoting the step number, ϵ ∈ R the step size and df

dx the derivate
of f along x ∈ R:

xn = xn−1 − ϵ · df (x)
dx . (20)

14



Steepest descent on the parabola

Working with the initial position x0 = 5 and a step size of ϵ = 0.1
for 25 steps leads to:

−4 −2 0 2 4
0

5

10

15

20

25

x

f(x
)

Minimization of a parabola

0 5 10 15 20 25
0

2

4

6

8

10

step

df
(x

)
dx

Derivative step sizes

15



Summary

• Following the negative derivative iteratively got us to the
minimum.

• At points of interest, the first derivate is zero.

16



Optimization in many dimensions



The two-dimensional paraboloid

f (x1, x2) = x2
1 + x2

2 (21)

−3 −2 −1 0 1 2 3

−2

0

2

x1

x 2
Paraboloid

17



The gradient

The gradient lists partial derivatives with respect to all inputs in a
vector. For a function f : Rn → R of n variables the gradient
∇f : Rn → Rn is defined as

∇f =


∂f
∂x1
∂f
∂x2...
∂f
∂xn

 . (22)

18



Computing the gradient of the paraboloid

∇f (x1, x2) = ∇(x2
1 + x2

2 ) (23)

=
(

2x1

2x2

)
(24)

19



Gradients at points

For every point p = (x1, x2, . . . , xn) we can write

∇f (p) =


∂f
∂x1

(p)
∂f
∂x2

(p)
...

∂f
∂xn

(p)

 . (25)

20



Gradients on the Paraboloid

21



Gradient descent

Initial position: x0 = [2.9, −2.9],
Gradient step size: ϵ = 0.025

xn = xn−1 − ϵ · ∇f (xn−1) (26)

n denotes the step number, ∇ the gradient operator, and f (x) a
vector valued function.

22



Gradient descent on the Paraboloid

Paraboloid Optimization

23



The Rosenbrock test function

f (x1, x2) = (a − x1)2 + b(x2 − x2
1 )2 (27)

−2 −1 0 1 2
−1

0

1

2

3

x1

x 2
Rosenbrock

Figure: Rosenbrock function with a=1 and b=100 . 24



The gradient of the Rosenbrock function

Recall the Rosenbrock function:

f (x , y) = (a − x)2 + b(y − x2)2 (28)

∇f (x , y) =
(

−2a + 2x − 4byx + 4bx3

2by − 2bx2

)
(29)

25



Gradients on the Rosenbrock function

26



Gradient descent

Initial position: x0 = [0.1, 3.],
Gradient step size: ϵ = 0.01

xn = xn−1 − ϵ · ∇f (xn−1) (30)

n denotes the step number, ∇ the gradient operator, and f (x) a
vector valued function.

27



Gradient descent on the Rosenbrock function

Rosenbrock Optimization

28



Motivating Momentum

• The standard gradient descent approach gets stuck.
• What if we could somehow use a history of recent gradient

information?

29



Gradient descent with momentum

Initial position: x0 = [0.1, 3.],
Gradient step size: ϵ = 0.01,
Momentum parameter: α = 0.8

vn = αvn−1 − ϵ · ∇f (xn−1) (31)
xn = xn−1 + vn (32)

v denotes the velocity vector, n the step number, ∇ the gradient
operator, and f (x) a vector-valued function. A good initial value
for v0 is 0.

30



Gradient descent with momentum

Rosenbrock Optimization

31



Summary

• Gradient descent works in high-dimensional spaces!
• On the Rosenbrock function, we required momentum to find

the minimum.
• Momentum adds the notion of inertia, which can help

overcome local minima in some cases.
• Just like in the 1d case, the gradient equals zero at local

minima and saddle points.

32



Optional reading

• Mathematics for machine learning, [DFO20, Chapter 5, Vector
Calculus]

• Numerical optimization, [WN+99, Chapter 8.2, Automatic
Differentiation]

• Deep learning, [GBC16, Chapter 8, Optimization for Training
Deep Models]

33



References

References

[DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong.
Mathematics for machine learning. Cambridge University Press, 2020.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[WN+99] Stephen Wright, Jorge Nocedal, et al. “Numerical optimization.” In:
Springer Science 35.67-68 (1999), p. 7.

34


	Introduction
	The derivative
	Optimization in a single dimension
	Optimization in many dimensions
	References

