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Introduction



Motivating linear algebra

Même le feu est régi par les nombres.

Fourier1 studied the transmission of heat using tools that would
later be called an eigenvector-basis. Why would he say something
like this?

1Jean Baptiste Joseph Fourier (1768-1830)
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Matrices

A ∈ Rm,n is a real-valued Matrix with m rows and n columns.

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
... ... ...

am1 am2 . . . amn

 , aij ∈ R. (1)
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Essential operations



Addition

Two matrices A ∈ Rm,n and B ∈ Rm,n can be added by adding
their elements.

A + B =


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
... ... . . . ...

am1 + bm1 am2 + bm2 . . . amn + bmn

 (2)
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Multiplication

Multiplying A ∈ Rm,n by B ∈ Rn,p produces C ∈ Rm,p,

AB = C. (3)

To compute C the elements in the rows of A are multiplied with
the column elements of C and the products added,

cik =
n∑

j=1
aij · bjk . (4)
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The identity matrix

I =


1

1
. . .

1

 (5)
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Matrix inverse

The inverse Matrix A−1 undoes the effects of A, or in
mathematical notation,

AA−1 = I. (6)

The process of computing the inverse is called Gaussian
elimination.

7



The Transpose

The transpose operation flips matrices along the diagonal, for
example, in R2, (

a b
c d

)T

=
(

a c
b d

)
(7)
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Motivation of the determinant

• The determinant contains lots of information about a matrix
in a single number.

• When a matrix has a zero determinant, a column is a linear
combination of other columns. Its inverse does not exist.

• We require determinants to find eigenvalues by hand.
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Computing determinants in two or three dimensions

The two-dimensional case:∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11 · a22 − a12 · a21 (8)

(9)

Computing the determinant of a three-dimensional matrix.∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ = a11 ·
∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣− a21 ·
∣∣∣∣∣a12 a13

a32 a33

∣∣∣∣∣+ a31 ·
∣∣∣∣∣a12 a13

a22 a23

∣∣∣∣∣
(10)
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Determinants in n-dimensions

∣∣∣∣∣∣∣∣∣∣∣

a11 a21 . . . a1n

a21 a22 . . . a2n
... ... ...

am1 am2 . . . amn

∣∣∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣
a22 . . . a2n
... ...

am2 . . . amn

∣∣∣∣∣∣∣∣+ a21

∣∣∣∣∣∣∣∣
a21 . . . a2n
... ...

am2 . . . amn

∣∣∣∣∣∣∣∣

. . . am1

∣∣∣∣∣∣∣∣
a11 . . . a1n

a21 . . . a2n
... ...

∣∣∣∣∣∣∣∣
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Summary

• We saw some of the most important operations in linear
algebra.

• Let’s use these to do something useful next.
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Linear curve fitting



What is the best line connecting measurements?
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Problem Formulation

A line has the form f (a) = da + c, with c, a, d ∈ R. In matrix
language, we could ask for every point to be on the line,

1 a1

1 a2

1 a3
... ...
1 an


(

c
d

)
=


p1

p2
...

pn

 . (11)

We can treat polynomials as vectors, too! The coordinates
populate the matrix rows in A ∈ Rnp×2, and the coefficients
appear in x ∈ R2, with the points we would like to model in
b ∈ Rnp . The problem now appears in matrix form and can be
solved using linear algebra!
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The Pseudoinverse [Str+09; DFO20]

The inverse exists for square or n by n matrices. Nonsquare A such
as the one we just saw, require the pseudoinverse,

A† = (AT A)−1AT . (12)

Sometimes solving Ax − b = 0 is impossible, the pseudoinverse
considers,

min
x

1
2 |Ax − b|2 (13)

(14)

instead. A†b = x yields the solution.
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Linear regression
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What about harder problems?
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Fitting higher order polynomials



1 a1
1 a2

1 . . . am
1

1 a1
2 a2

2 . . . am
2

1 a1
3 a2

3 . . . am
3

... ... ... . . . ...
1 a1

n a2
n . . . am

n


︸ ︷︷ ︸

A


c1

c2
...

cm


︸ ︷︷ ︸

x

=


p1

p2
...

pn


︸ ︷︷ ︸

b

. (15)

As we saw for the linear regression A†b = x gives us the
coefficients.
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Overfitting

The figure below depicts the solution for a polynomial of 7th
degree, that is m = 7.
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Summary

• We saw how linear algebra lets us fit polynomials to curves.
• For the 7th-degree polynomial the noise took over! What

now?
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Regularization



Motivation

• Is there a way to fix the previous example?
• To do so we start with a rather peculiar observation.
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Eigenvalues and Eigen-Vectors

Multiply matrix A with vectors x1 and x2,

A =
(

1 4
0 2

)
, x1 =

(
1
0

)
, x2 =

(
4
1

)
, (16)

we observe

Ax1 =
(

1
0

)
, Ax2 =

(
8
2

)
(17)

Vector x1 has not changed! Vector x2 was multiplied by two. In
other words,

Ax1 = 1x1, Ax2 = 2x2 (18)
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Eigenvalues and Eigenvectors

Eigenvectors turn multiplication with a matrix into multiplication
with a number,

Ax = λx. (19)

Subtracting λx leads to,

(A − λI)x = 0 (20)

The interesting solutions are those were x ̸= 0, which means

det(A − λI) = 0 (21)
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Eigenvalue-Decomposition [Str+09]

Eigenvalues let us look into the heart of a square system-matrix
A ∈ Rn,n.

A = S


λ1

λ2
. . .

λn

S−1 = SΛS−1, (22)

with S ∈ Cn,n and Λ ∈ Cn,n.
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Singular-Value-Decomposition [Str+09]

What about a non-square matrix A ∈ Rm,n? Idea:

ATA = V


σ2

1
. . .

σ2
n

V−1, AAT = U


σ2

1
. . .

σ2
m

U−1.

(23)

Using the eigenvectors of the AT A and AAT we construct,

A = UΣVT , (24)

with A ∈ Rm,n, U ∈ Rm,m, Σ ∈ Rm,n and V ∈ Rn,n . Σ’s diagonal
is filled with the square root AT A’s eigenvalues.
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Singular values and matrix inversion [GK65]

The singular value matrix is a zero-padded diagonal matrix

A = UΣVT = U


σ1

. . .
σn

0

VT . (25)

Inverting the sigmas and transposing yields the pseudoinverse

A† = VΣ†UT = V


σ−1

1
. . .

σ−1
n

0


T

UT . (26)
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Regularization via Singular Value Filtering

Originally we had a problem computing A†b = x. To solve it, we
compute,

xreg =
n∑

i=1
fi

uT
i b
σi

vi (27)

The filter factors are computed using fi = σ2
i /(σ2

i + ϵ). Singular
values σi < ϵ are filtered. Expressing equation 27 using matrix
notation:

xreg = VFΣ†UT bnoise (28)

with A ∈ Rm,n, U ∈ Rm,m, V ∈ Rn,n, diagonal F ∈ Rm,m,
Σ† ∈ Rn,m and b ∈ Rn,1. F has the fi in its diagonal.
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Regularized solution
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Conclusion

• True scientists know what linear can do for them!
• Think about matrix shapes. If you are solving a problem, rule

out all formulations where the shapes don’t work.
• Regularization using the SVD is also known as Tikhonov

regularization.
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