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Introduction



Motivating linear algebra

Méme le feu est régi par les nombres.

Fourier! studied the transmission of heat using tools that would
later be called an eigenvector-basis. Why would he say something
like this?

! Jean Baptiste Joseph Fourier (1768-1830)



A € R™" is a real-valued Matrix with m rows and n columns.

all dip ... din
ani dal»o ... aon

A= ] ] ] ,aij € R. (1)
dmi adm2 ... dmn



Essential operations



Two matrices A € R™" and B € R™" can be added by adding
their elements.

a1 + b11 aip +bip ... ain+ bin

ar1 + bo1 am + by ... axy,+ b
ALB— . n . n

am1 + bml am2 + bm2 s amn + bmn



Multiplication

Multiplying A € R™" by B € R™P produces C € R™P,
AB =C. (3)

To compute C the elements in the rows of A are multiplied with
the column elements of C and the products added,

n
ik =Y ajj - bjk. (4)
=1



The identity matrix



Matrix inverse

The inverse Matrix A~ undoes the effects of A, or in
mathematical notation,

AA~l =1 (6)

The process of computing the inverse is called Gaussian
elimination.



The Transpose

The transpose operation flips matrices along the diagonal, for
example, in R?,



Motivation of the determinant

= The determinant contains lots of information about a matrix

in a single number.

= When a matrix has a zero determinant, a column is a linear
combination of other columns. Its inverse does not exist.

= We require determinants to find eigenvalues by hand.



Computing determinants in two or three dimensions

The two-dimensional case:

ail anp
= a1 - axp — a2 - a (8)
a1 ax

Computing the determinant of a three-dimensional matrix.

ai1 d12 a3
ay azs ai2  ai3 a12 a3
a1 a2 a3 = ail- —as1- + a3z -
as32  4as3 432 ass a2 a3
asy a3z ass
(10)
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Determinants in

a1 a2
ap1 a2
dml  dm2

n-dimensions

ain
- dno e daon ani
2n
— <l + a1
am2 ... amn am?
dmn
ail
...adm1 |921

an

amn

dln
an
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= We saw some of the most important operations in linear
algebra.

= Let's use these to do something useful next.
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Linear curve fitting




What is the best line connecting measurements?
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Problem Formulation

A line has the form f(a) = da+ c, with ¢, a,d € R. In matrix
language, we could ask for every point to be on the line,

1 al
5 p1
c P2
1 a3 = 11
i s, Pn

We can treat polynomials as vectors, too! The coordinates
populate the matrix rows in A € R™*2 and the coefficients
appear in x € R?, with the points we would like to model in

b € R". The problem now appears in matrix form and can be
solved using linear algebra!
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The Pseudoinverse [Str+09; DFO20]

The inverse exists for square or n by n matrices. Nonsquare A such
as the one we just saw, require the pseudoinverse,

AT=(ATA) AT, (12)

Sometimes solving Ax — b = 0 is impossible, the pseudoinverse
considers,

@n;Ax—bF (13)
(14)

instead. Afb = x yields the solution.
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Linear regression
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What about harder problems?
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Fitting higher order polynomials

1 2 m
1 a7 a7 af o -
1 a5 a3 A
1 al 22 ay 2l _ P
3 a3 ... a3 =1 (15)
: c >
1 2 m m n
1 a, dap an SN——
x b
A

As we saw for the linear regression Afb = x gives us the
coefficients.
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Overfitting

The figure below depicts the solution for a polynomial of 7th
degree, that is m=7.
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= We saw how linear algebra lets us fit polynomials to curves.

= For the 7th-degree polynomial the noise took over! What
now?
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Regularization




= |s there a way to fix the previous example?

= To do so we start with a rather peculiar observation.
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Eigenvalues and Eigen-Vectors

Multiply matrix A with vectors x; and xz,

A= 3)a=(3)==(3) oo
AX1 = ((1)> ,AX2 = <§> (17)

Vector x; has not changed! Vector xa was multiplied by two. In

we observe

other words,

Axq = 1x1, Axy = 2x» (18)
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Eigenvalues and Eigenvectors

Eigenvectors turn multiplication with a matrix into multiplication

with a number,
Ax = \x. (19)
Subtracting Ax leads to,
(A—X)x=0 (20)
The interesting solutions are those were x # 0, which means

det(A — Al) =0 (21)
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Eigenvalue-Decomposition [Str+-09]

Eigenvalues let us look into the heart of a square system-matrix
A cR".

A=S . S 1 =SAS (22)

with § € C™" and A € C™".
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Singular-Value-Decomposition [Str+09]

What about a non-square matrix A € R™"? |dea:

oi oi
ATA=V V1L AAT =U Ut
o2 o2
(23)
Using the eigenvectors of the ATA and AAT we construct,
A=UxV', (24)

with A€ R™" U e R™™ ¥ € R™" and V € R™" . ¥'s diagonal
is filled with the square root AT A’s eigenvalues.
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Singular values and matrix inversion [GK65]

The singular value matrix is a zero-padded diagonal matrix

o1
A-UsV’ = U v’ (25)
On

0

Inverting the sigmas and transposing yields the pseudoinverse
-1 T

Al = vsiuT = v u”. (26
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Regularization via Singular Value Filtering

Originally we had a problem computing Afb = x. To solve it, we
compute,

" ulb
Xreg = Z fi— —Vi (27)
=il g

o

The filter factors are computed using f; = 02/(0? + ¢€). Singular
values o; < € are filtered. Expressing equation 27 using matrix
notation:

Xreg = VFZTUTbnoise (28)

with A € R™" U e R™™ V € R™", diagonal F € R™™,
Yt € R™™ and b € R™L. F has the f; in its diagonal.
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Regularized solution
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Conclusion

= True scientists know what linear can do for them!

= Think about matrix shapes. If you are solving a problem, rule
out all formulations where the shapes don’t work.

= Regularization using the SVD is also known as Tikhonov
regularization.
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