
Statistics for Machine Learning

Moritz Wolter
September 11, 2023

High-Performance Computing and Analytics Lab, University of Bonn



Overview

Foundational Statistical Concepts

Gaussian mixture models

1



Why statistics?

• Its useful and can help us make decisions when outcomes are
uncertain.

• Like getting a vaccination.
• Statistics is also an integral part of machine learning. Without

it, we won’t understand many machine learning methods.
• Neural networks, for example, model class probabilities in the

classification case.

Today’s talk is mostly based on [Has22], [DFO20] and some
[Unp22].
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Figure 1: Statistical inference means inferring something about a
population using information from samples [Has22]. 3



Probability and random variables [DFO20]

Sample space Ω
The samples space contains all possible outcomes of an
experiment. A coin toss, for example, can have two outcomes
heads (h) or tails (t). Which leads to the set {h, t}. Two sucessive
tosses generate the larger space {hh, tt, ht, th}.

Event space A
A set of events, an event is a set of outcomes from the sample
space.

Probability P
With each event A we associate a number P(A). This number
measures the probability that the event will occur.
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Towards distribution functions [Has22]

Random Variable
A random variable X is an uncertain quantity. Its value depends on
random events. A good example is the result of a dice roll.

Probability Distribution
Probability density functions are a mathematical tool to describe
the randomness of data in populations and samples.
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Discrete probabilities [DFO20]

We can think about probabilities for multiple discrete random
variables, by filling out multidimensional arrays or tables. Our
arrays contain probability numbers. For two variables,

P(X = xi , Y = yi) = nij
N (1)

above nij counts the events for each corresponding event xi , yi .
And N measures all events in total.
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X
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Marginal and conditional probability

We can compute marginal probabilities by summing rows or
columns.

P(X = xi) = ci
N =

∑3
j=1 nij

N (2)

P(X = y1) = rj
N =

∑3
i=1 nij
N (3)

The marginal probabilities allow us to define conditional
probability:

P(Y = yi |X = xi) = nij
ci

(4)

P(X = xi |Y = yi) = nij
rj

(5)
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Discrete versus continuous probability

Coin flips have discrete outcomes therefore we assign a probability
to every possible event in a table.

Additionally, we can consider continuous functions, where
intermediate values are also defined. This is going to be important
for the Gaussian distribution.

See [DFO20] for a more formal discussion of the differences.

8



The Probability Density Function

In the continuous world, pdfs p(x) are always positive

p(x) ≥ 0, ∀x ∈ R, (6)

The probability for a value to end up between a and b is

p(a < x < b) =
∫ b

a
p(x)dx , (7)

and the area under its curve must sum up to one,∫ ∞

−∞
p(x)dx = 1. (8)
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Empirical mean

Typically, people mean the arithmetic mean when speaking about
the mean,

µ̂x =
∑n

i=1 xi
n . (9)

For the sample size n ∈ 0, 1, 2, 3, . . . or N.

np.mean allows you to compute the mean.
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Emperical variance

Variance measures the spread in the measurements of a random
variable. It is defined as:

σ̂2
x =

∑n
i=1(xi − µ̂x )2

n − 1 . (10)

Again n ∈ N denotes the sample size. np.var implements this.
The standard deviation is defined as the square root of the
variance. Its main advantage is that it has the same dimension as
the original data [Has22],

σ̂x =
√∑n

i=1(xi − µ̂x )2

n − 1 . (11)

np.std implements the computation of the standard deviation.

[Has22] uses x for µ̂x and s for σ̂x . Our notation is consistent
width [McN16].
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Mean and variance in Gaussian probability density
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Figure 2: Normal distribution densitiy functons for different values of µ

and σ. Integrating between two points on x tells us how likely the
random variable will end up between those two points.

12



From Probability Density to Probability

Let p(x) be the Probability Density Function (PDF) of a random
variable X. The integral over p(x) between a and b represents the
probability of finding the value of X in that range [Has22].
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The Cumulative distribution function
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The Cumulative distribution function

The cumulative distribution function P(x) allows us the compute
the probability for a random variable X to be in a certain range.

P[a < X < b] =
∫ b

a
p(x)dx = P(b) − P(a). (12)
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Gaussian Distribution

f (x |µ, σ) = 1√
2πσ2

e− 1
2 ( x−µ

σ
)2 (13)
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Figure 3: Plot of a Gaussian probability density function.
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Uniform Distribution

f (x) =

1/(b − a) for a ≤ x ≤ b
0 otherwise

(14)
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Figure 4: Plot of a uniform probability density function. 17



Multidimensional Probability distributions [DFO20]

The patterns we observed earlier generalize to many dimensions.
The multi-dimensional view leads to functions f : RD → R. We
expect

∀x ∈ RD : f (x) > 0. (15)

Similarly, the total area covered by the function should equal one,∫
RD

f (x)dx = 1. (16)
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Multivariate distributions and continuous maginals

Continuous probability distributions can have multiple variables.
Consider for example p(x, y). In this case

p(x) =
∫ ∞

−∞
p(x, y)dy, (17)

p(y) =
∫ ∞

−∞
p(x, y)dx. (18)

In the discrete case, the integrals turn into sums [DFO20]. Let’s
now revisit continuous conditional probability,

p(y|x) = p(x, y)
p(x) , (19)

with p(y|x) instead of p(y|X = x).
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Bayes Law [DFO20]

Sometimes, we have no direct way of observing a property. We are
forced to infer knowledge indirectly. In such cases, Bayes law helps.
Bayes states

p(x|y) = p(y|x)p(x)
p(y) . (20)

The law is a consequence of our ability to factorize distributions as
p(x, y) = p(x|y)p(y). If we cant observe x directly, we may have
expectations of its distribution p(x), and the likelihood p(y|x).
Bayes allows us to find a posterior p(x|y) given evidence p(y).

Bayes rule will be important during the next week of this course.
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Multidimensional Gaussians

N-dimensional Gaussian pdfs are defined as [McN16],

ϕ2(x|µg , Σg) = 1√
(2π)N∥Σg∥

exp(−1
2(x − µg)T Σ−1

g (x − µg)).

(21)

µg ∈ RN denotes the mean vector, Σg ∈ RN×N the covariance
matrix, −1 the matrix inverse, T the transpose and g ∈ N the
number of the distrubtion, which will be important later.
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The Bell curve in two dimensions
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Covariance

Covariance describes how two random variables ”vary
together”[Has22]. More formally,

σ̂xy = 1
n − 1

n∑
i=1

(xi − µ̂x )(yi − µ̂y ) (22)

For two n sized samples x and y and real numbers x , y and µ.
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Covariance Matrix

The covariance matrix of multidimensional variables is filled with
individual variables. Consider the two-dimensional case:

Σ =
(

σ̂xx σ̂xy

σ̂yx σ̂yy

)
(23)
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Correlation

Correlation tells us how much the relationship between two random
variables is linearly connected [Has22]

rxy = σ̂xy
σ̂x σ̂y

(24)

= 1
(n − 1)σ̂x σ̂y

n∑
i=1

(xi − µ̂x )(yi − µ̂y ). (25)
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Auto-Correlation

Auto-correlation [Has22] is correlation of a time delayed signal with
itself. The operation is typically written as a function of the delay.

ck = 1
N

N−k∑
t=1

(xt − µ̂x )(xt+k − µ̂x ) (26)

For a signal of length N. To allow k to move to all possible
positions zeros are typically added on both sides. In the engineering
literature, the normalization is typically dropped [Has22].
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Auto-Correlation

autocorrelation
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Gaussian mixture models

A Gaussian mixture model has the density [McN16]

f (x|θ) =
G∑

g=1
ρgϕ(x|µg , Σg). (27)

With the normal distribution ϕ defined as before. ρg denotes the
global probability with which a data value could originate from
gaussian g . The gs number the gaussians, and G is the total
number of Gaussians in the mix. We will use two. ϕ denotes the
parameters µg and Σg .
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Likelihood

Likelihood models the probability of data originating from a
distribution as a function of the parameters. The gaussian case is
modelled by [McN16]

Lc(θ) =
n∏

i=1

G∏
g=1

[ρgϕ(xi |µg , Σg)]zig . (28)

We want to maximize the likelihood.
In other words, we want to transform the bells in such a way, that
they explain the points as plausible as possible.
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Log-Likelihood

The log-likelihood is easier to work with consider,

lc(θ) =
n∑

i=1

G∑
g=1

zig [log ρg + log ϕ(xi |µg , Σg)]. (29)

Now the exponent is gone, and the products turned into sums.
The logs rescale the bells but do not change their maxima.
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Clustering using a GMM

After guessing an initial choice for all µ̂g and Σ̂g [McN16],

ẑig = ρgϕ(xi|µ̂g , Σ̂g)∑G
h=1 ρhϕ(xi|µ̂h, Σ̂h)

(30)

tells us the probability with which point xi came from gaussian g .
It creates an association between the data points and the
Gaussians. Numerically evaluation results in a matrix Z ∈ RG×n.
Use it’s output to select the points which belong to each class.
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Fitting a GMM

Use its output to select the points which belong to each class.
Optimizing the gaussian parameters θ, requires four steps per
gaussian and iteration,

1. update ẑig .

2. update ρ̂g = ng/n.

3. update µ̂g = 1
ng

∑n
i=1 ẑigxi .

4. update Σ̂g = 1
ng

∑n
i=1(xi − µ̂g)(xi − µ̂g)T .

Above ng denotes the number of points in class g . These four
steps must be repeated until the solution is good enough.
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Fitting a GMM

Gauss optimization
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