
Machine Learning Basics

Elena Trunz
September 15, 2023

Uni Bonn



Overview

Machine Learning Algorithms

Generalization

Parameter Estimation

1



Machine Learning Algorithms



What is machine learning?

Machine learning is a subfield of artificial intelligence with the goal
of developing algorithms capable of learning from data
automatically.

What do we mean by learning?

”A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T , as measured by P, improves with
experience E .” (Mitchell, 19971)

1Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York.

2



What is machine learning?

Machine learning is a subfield of artificial intelligence with the goal
of developing algorithms capable of learning from data
automatically.

What do we mean by learning?

”A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T , as measured by P, improves with
experience E .” (Mitchell, 19971)

1Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York.

2



What is machine learning?

Machine learning is a subfield of artificial intelligence with the goal
of developing algorithms capable of learning from data
automatically.

What do we mean by learning?

”A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T , as measured by P, improves with
experience E .” (Mitchell, 19971)

1Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York.

2



Experience E

The experience E is the information that the algorithm can use
during learning:

• dataset
• aka (training) data

Dataset contains examples (data points): collection of features
that have been quantitatively measured from some object or event

• m-dimensional data point: x ∈ Rm

• each entry xi is another feature

3



Dataset: example

Iris dataset2

• Collection of measurements of different parts of 150 iris plants
• Each individual plant coresponds to one example
• The features within each example are

• sepal length
• sepal width
• petal length
• petal width

• Recording, which species each plant belonged to
• Three different species of iris plants

2https://archive.ics.uci.edu/ml/datasets/iris

4

https://archive.ics.uci.edu/ml/datasets/iris


Supervised vs. unsupervised learning

Supervised learning:

• Each data point x comes with an associated label or target
value y

• The algorithm is learned by trying to match the targets, or
predict y from x

• From a probabilistic sense, this corresponds to estimating
P(y|x)

Unsupervised learning:

• Only data points x, no labels
• The goal is to uncover the inherent structure within the data
• From a probabilistic sense, this corresponds to estimating data

generating distribution pdata(x)

5



Machine learning tasks

Tasks specify how a machine learning system should process
examples. Common tasks include

• classification: determine category of input i.e.
f : Rm → {1, ..., K}

• regression: predict numerical value(s) for some input, i.e.
f : Rm → Rp

• density estimation: learn probability density (if x is
continuous) or probability mass (if x is discrete) function
pmodel : Rm → R on the space that the examples were drawn
from

• dimensionality reduction: find a compact, lower-dimensional
representation of high-dimensional data x ∈ RD, which is
often easier to analyze than the original data

6



More machine learning tasks

• imputation of missing values or hole filling: predict values
of missing entries xi of x ∈ Rm

• structured prediction: vector output with well-defined
relationships between the elements

• synthesis: generation of new examples that are similar to the
training data

• denoising: get clean example x ∈ Rm from corrupted example
x̃ ∈ Rm

7



Performance measure P

To evaluate a machine learning algorithm, we must design a
quantitative measure of its performance.

Performance measure is task-spesific:

• Classification and imputation of missing inputs:
• Accuracy: proportion of examples for which the model

produces the correct output
• Error rate: proportion of examples for which the model

produces an incorrect output
• Density estimation:

• Average log-probability the model assigns to examples

8



Generalization

We want to evaluate performance of our system on data that it
has not yet seen.

This estimates how well the system will generalize, in comparison
to performance on already seen data used during the learning
process.

• Unseen data makes up our test set or test data
• Already seen data is the training set or training data

During training we want to reduce the training error – this is
simply an optimization problem.

What distinguishes learning from optimization is the interest in
also reducing the test error (generalization error).

9



Linear regression: experience

Recall the regression problem: the goal is to build a system that

• takes a vector x ∈ Rm as input and
• predicts the value of a scalar y ∈ R as its output.

Our experience E are the input examples X = {x1, . . . , xN} and
the corresponding target values y ∈ RN .

Thus, the dataset consists of N example pairs
{(x1, y1), . . . , (xN , yN)}

10



Linear regression: task

Let ŷ be the value that our model predicts y should take on. We
define the output to be

ŷ = w⊤x

where w is a vector of model parameters.

Parameters are values that control the behavior of the system.

→ Our task T : predict y from x by outputting ŷ = w⊤x.

11



Linear regression: performance measure

Now we need to define our performance measure P.

Suppose we have M example inputs together with the correct
target values in the test dataset.

One way of measuring the performance of the model for a
regression task, is to compute the mean squared error (MSE):

MSEtest = 1
M
∑

i
(ŷ(test) − y(test))2

i

= 1
M ∥ŷ(test) − y(test)∥2

2

So the error increases whenever the Euclidean distance between
the predictions and the targets increases.

12



Linear regression: ML algorithm

To make a machine learning algorithm, we need to design an
algorithm that will improve the parameters w in a way that reduces
MSEtest when the algorithm is allowed to gain experience by
observing the training set (X(train), y(train)).

One way to do it is to minimize MSEtrain. We can simply solve for
where the gradient of MSEtrain is 0:

∇wMSEtrain = 0

∇w
1
M ∥ŷ(train) − y(train)∥2

2 = 0

1
M ∇w∥X(train)w − y(train)∥2

2 = 0

⇒ w = (X(train)⊤X(train))−1X(train)⊤y(train)

13



Linear regression: result

Training sets consists of ten examples, each containing one feature. So
there is only one parameter to learn, w1 (= slope).

Image was taken from [GBC16] 14



Linear regression: notes

Usually linear regression refers to a model with an additional
parameter – an intercept term b:

ŷ = w⊤x + b

This means that the plot of the model’s predictions need not pass
though the origin.

We can continue to use the model ŷ = w⊤x, by implicitly
including b:

• Augment x with an extra entry that is always set to 1
• The weight corresponding to the extra 1 entry plays the role

of the bias parameter b

15



Loss function

A loss function is a function that measures the difference (or loss)
between a predicted label and a true label (e.g. MSEtrain in the
regression example).

It is closely related to performance measure:

• Loss function is used during the training to train the model
• Performance measure is used after the training to evaluate the

model

Sometimes both can be represented by the same function (as it
was in the case of regression), but for some other tasks (e.g.
classification) we have different measures (e.g. cross-entropy vs.
accuracy).

16



Generalization



Underfitting and overfitting

How well a machine learning algorithm will perform, depends on its
ability to

1. Make the training error small
2. Make the gap between training and test error small

Algorithms which underfit, cannot satisfy the first criteria.

Algorithms which overfit, can satisfy the first criteria but not the
second.

17



Model Capacity

Underfitting and overfitting can be controlled by adjusting the
model capacity in the learning algorithm.

A model’s capacity is its ability to fit a wide variety of functions.

Models with (too) low capacity are not rich or expressive enough
to capture the training data and hence underfit.

Models with (too) high capacity simply memorize the training data
and will therefore overfit.

18



Model Capacity (2)

• Capacity can be controlled by the choice of the hypothesis
space. This space determines the set of functions that the
learning algorithm can select as being the solution.

• The linear regression algorithm has the set of all linear
functions of its input as its hypothesis space.

• We can increase the model’s capacity by generalizing linear
regression to include polynomials in its hypothesis space.

Capacity here is determined by the polynomial degree.
Image was taken from [GBC16] 19



Capacity vs. error

Depending on the model capacity training and test error behave
differently:

Typical relationship between capacity and error.

Image was taken from [GBC16] 20



Regularization

Another way to control underfitting and overfitting is to drastically
increase the capacity and use a regularizer so as to not overfit.

Regularization is any modification we make to a learning algorithm
that is intended to reduce its generalization error but not its
training error.

We can regularize a model by giving a learning algorithm a
preference for one solution over another in its hypothesis space.

21



Regularization: weight decay

• We can modify the objective function (loss function) for linear
regression to include weight decay:

J(w) = MSEtrain + λw⊤w

• Regularizer penalizes weights that have bigger squared L2

norm. λ controls the strength of our preference for smaller
weights.

We fit a high-degree polynomial regression model and use weight decay
against overfitting.
Image was taken from [GBC16] 22



Hyperparameters

The parameters w of the regression example are determined
(optimized) during the training. Such parameters are also called
weights.

Most learning algorithms have some free parameters that are not
determined by the learning algorithm, but are set in advance to
control the algorithm’s behavior.

Such free parameters are called hyperparameters.

In the previous regression example the polynomial degree and λ are
two hyperparameters.

23



Hyperparameter estimation

We cannot use our test set to make any choices about the model,
including its hyperparameters.

To determine the hyperparameters, we need a validation set of
examples that the training algorithm does not observe.

We always construct the validation set from the training data:

• Split the training data into two disjoint subsets
• One of the subsets is used to learn the parameters
• The other subset is used to estimate the generalization error

during or after training and to guide the selection of the
hyperparameters

After the training and all hyperparameter optimization is complete,
we can estimate the generalizaiton error on the test set.

24



Cross-validation

If the training set is small and the split would result in the
validation set being too small, cross-validation can help:

Train set Test set

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Test set

Validation set
Use to tune hyperparameters

• Loop through all folds to be the validation fold
• Other folds build the train set
• Average performance values

25



What do we mean by learning? - revised

Learning: Based on training data, finding a model with parameters
θ that generalizes well

• Empirical risk minimization view:
• Predictor as a function
• Loss function
• Regularization

• Probabilistic view:
• Predictor (estimator) as a probabilistic model
• Likelihood
• Prior
→ Estimating parameters based on data

26



Parameter Estimation



Point estimation

Point estimation is the attempt to provide the single ”best”
prediction of some quantity of interest:

• Single parameter
• Vector of parameters (e.g. weights in our linear regression

example)
• Function

27



Point estimation (2)

Let X = {x1, . . . , xN} be a set of N independent and identically
distributed (i.i.d.) data points. A point estimator is any function
of the data:

θ̂N = g(x1, . . . , xN).

• Good estimator: Function whose output is close to the true
underlying θ that generated the training data.

28



Properties of point estimators

How can we tell, if an estimator is any good?

→ We can analyse two most common properties of point
estimators:

• Bias
• Variance

29



Bias

• What is the inherent error that persists in your estimator,
even when trained with an unlimited amount of data?

• The error arised because the estimator leans towards a
particular type of solution (e.g. linear regression)

• Bias is an inherent characteristic of the model

30



Variance

• Measures, how much we expect the estimator to vary as a
function of the data sample, i.e. if we were to independently
re-sample the dataset from the underlying data generating
process

• To what extent does the estimator exhibit excessive
specialization to a specific training set (overfitting)?

31



Bias-Variance tradeoff

The relationship between bias and variance is tightly linked to the
concepts of underfitting, overfitting and model capacity.

Image was taken from [GBC16] 32



How to find a good estimator?

• We can now analyse the properties of the estimator and
distinguish a good one

• Where do good estimators come from?
• Rather than guessing that some function might be a good

estimator and then analyzing its bias and variance, we need
some principle from which we can derive specific functions
that are good estimators.

→ MLE and MAP

33



Where does our data come from?

• Data comes from distribution p(X, Y)
• If we had access to this distribution, we could solve for P(y |x)
• Can we approximate this distribution from the data?
• We start with the distribution p(X) (unsupervised) and then

generalize to p(X, Y) (supervised)

34



Maximum likelihood estimation (MLE)

Let X = {x1, . . . , xN} be a set of N (i.i.d.) data points. Then the
MLE for θ is defined as

θML = argmax
θ

p(X; θ)

35



MLE (2)

Since xi are independent, we can rewrite it as

θML = argmax
θ

p(X; θ)

= argmax
θ

m∏
i=1

p(xi ; θ)

= argmax
θ

m∑
i=1

log p(xi ; θ)

36



Properties of MLE

The ML estimator, as N → ∞, will converge to the true value,
provided that

• the true distribution pdata lies within the model family
pmodel(·; θ). Otherwise no estimator can recover pdata.

• the true distribution pdata corresponds to exactly one value of
θ. Otherwise MLE can recover the correct pdata but will not
be able to determine, which value of θ was used by the
data-generating process.

When would MLE fail?

37



Frequentists vs Bayesians

This image is licenced under CC BY-NC 2.5. 38

https://xkcd.com/1132/
https://creativecommons.org/licenses/by-nc/2.5/


Which parameters θ make my data most likely?

• Frequentists write this question like this: P(X; θ)
• Bayesians write this question like this: P(X|θ)
• That means that θ is no longer a parameter, it’s a random

variable and we can condition on it
• This also means there is a distribution p(θ) and we can draw

data from it
• Frequentists strongly object to this: there is no event

associated with θ!

39



Bayes

40



Maximum a posteriori estimation (MAP)

θMAP = argmax
θ

p(θ|X) = argmax
θ

log p(X|θ)︸ ︷︷ ︸
log-likelihood

+ log p(θ)︸ ︷︷ ︸
log prior

41



Conditional likelihood (MLE)

Let X = {x1, . . . , xN} be a set of N (i.i.d.) training inputs and
y = {y1, . . . , yN} be a set of corresponding targets. Then the MLE
for θ can be obtained as

θML = argmax
θ

p(y|X, θ)

• To find the desired parameters θML that maximize the
likelihood, we usually perform gradient ascent (or gradient
descent on the negative likelihood).

• In our example of linear regression, a closed form solution
exists, making iterative gradient descent unnecessary.

42



Log-likelihood

In practice, instead of maximizing the likelihood directly, we apply
the log-transformation and minimize the negative log-likelihood:

θML = argmax
θ

p(y|X, θ)

= argmin
θ

(
− log

N∏
i=1

p(yi |xi , θ)
)

= argmin
θ

(
−

N∑
i=1

log p(yi |xi , θ)
)

43



Conditional likelihood with prior (MAP)

θMAP = argmax
θ

p(θ|X, y).

By treating θ as a random variable and applying Bayes’ rule, we get

θMAP = argmax
θ

log p(y|X, θ)︸ ︷︷ ︸
conditional

log-likelihood

+ log p(θ)︸ ︷︷ ︸
log prior

= argmin
θ

(
−

N∑
i=1

log p(yi |xi , θ) − log p(θ)
)

.

44


	Machine Learning Algorithms
	Generalization
	Parameter Estimation

