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Introduction



Classification

Given:

• Training data: example-label pairs: {(x1, y1), . . . , (xN , yN)}
• Inputs xi ∈ Rm

• Target labels yj ∈ Y = {t1, . . . , tK }, K = number of classes

Find: Classifier (hypothesis) f : Rm → Y , with small generalization
error.
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Classification algorithm

Idea:

1. Represent input data in Rm

2. Partition the space, such that only the examples with the
same label are in the same partition
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Binary classification

Only two classes: Y = {−1, +1}

Image was taken from [DFO20] 4



What is the best classifier?
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What about this data?

Image was taken from [DFO20] 6



Linearly Separable Data



Narrow down the search

What is the best classifier here?

• Occam’s razor principle: When presented with competing
hypotheses about the same prediction, use the less complex
one (fewer parameters, fewer assumptions etc.)

→ Use linear classifiers (hyperplanes) as a hypothesis set
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Hyperplane partition

Hyperplane: affine subspace of dimension m − 1: Set of points,
such that

H = {x|w · x + b = 0},

where w ∈ Rm is a non-zero vector normal to the hyperplane and
b ∈ R is a scalar (b is the intercept):

Image was taken from [DFO20] 8



Hyperplane partition: classification

Classifying a test example xt :

• Calculate f (xt) := w · xt + b
• Classify xt as +1 if f (xt) ≥ 0
• Classify xt as −1 if f (xt) < 0

→ We must find w and b, such that for all training points holds:
• f (xn) ≥ 0 for points having yn = +1
• f (xn) < 0 for points having yn = −1
→ ynf (xn) ≥ 0
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Many candidate hyperplanes

Which hypothesis is the best one?

• We should try to find the classifier that will give the smallest
generalization error!

• Idea: Our classifier should not ”favor” any class
→ Choose the hyperplane with equally large (maximum) distance

to each class
Image was taken from [DFO20] 10



The margin

What is the distance between a hyperplane and a class?

It is called the margin and is defined as the perpendicular distance
between the hyperplane and the closest of the data points

If x is the point closest to the hyperplane, then ∥d∥2 is the margin.

It holds:
∥d∥2 = |w · x + b|

∥w∥
Image was taken from [DFO20] 11



Calculating the margin

The margin of H with respect to the dataset D can be calculated
as follows:

γ(w, b) = min
x∈D

|w · x + b|
∥w∥
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Maximizing the margin

We are interested in hyperplanes for which all training points are
correctly classified

→ ynf (xn) ≥ 0 must hold for our margin!

Thus, the maximum margin solution is found by solving

argmax
w,b

γ(w, b) or

argmax
w,b

{
1

∥w∥min
x∈D

|w · x + b|
}

subject to yn(w · x + b) ≥ 0, for all n = 1, . . . , N.
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Maximizing the margin (2)

• Observation 1: Above optimizaiton problem is too complex to
solve

• Observation 2: Rescaling w → cw and b → cb would not
change the distance from the hyperplane to any point

→ We can restrict ourselves to pairs (w, b) scaled such that
min
x∈D

|w · x + b| = 1

We can combine this constraint with the previous ones.

In this case all training points will have to satisfy the constraints:
yn(w · xn + b) ≥ 1:
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Maximizing the margin (3)

Combining the margin maximization with the fact that the
examples need to be on the correct side of the hyperplane gives us

argmax
w,b

1
∥w∥ ,

subject to yn(w · x + b) ≥ 1, for all n = 1, . . . , N.

Instead of maximizing the reciprocal of the norm, we often
minimize the squared norm:

argmin
w,b

∥w∥2,

subject to yn(w · x + b) ≥ 1, for all n = 1, . . . , N.

→ This optimization problem is known as the hard margin SVM.
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Solving hard margin SVM

Hard margin SVM is a convex quadratic programming (QP)
problem.

A variety of commercial and open-source solvers are available for
solving convex QP problems.

Maximum-margin hyperplane solution. Dashed lines are the marginal
hyperplanes. The points on them are support vectors.

Support vectors satisfy yn(w · xn + b) = 1.
Image was taken from [LDP19] 16



Soft-margin SVM



What hyperplane best separates this data?

Linear separation is possible, but with some errors.
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Slack variable

To be able to deal with noise, we can soften the hard constraints
of our optimization and allow for some slack

Slack variable ξ measures the distance of an example x+ when it is on
the wrong side.

Image was taken from [DFO20] 18



Soft-margin SVM problem

argmin
w,b

∥w∥2 + C
∑N

n=1 ξn,

subject to yn(w · x + b) ≥ 1 − ξn, for all n = 1, . . . , N.

and ξn ≥ 0, for all n = 1, . . . , N.

The parameter C is a hyperparameter that controls the
regularization.
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Non-Linearly Separable Data



What hyperplane best separates this data?

Linear separation is not possible!

Image was taken from [MT18] 20



Transformation for separation

While the data may not be linear separable in the input space, it
may be in a feature space, after a fancy transormation ϕ:

Left: the input space. Right: the feature space.

Image was taken from [MT18] 21



Non-linear SVM

Idea: instead of tweaking the definition of SVM to accomodate
non-linear decision boundaries, gain linearly separation by mapping
the input data to a higher dimensional feature space, where the
classes are linearly separable:

• Apply transform ϕ : Rm → RD on training data

x = (x1, . . . , xm)⊤ 7→ ϕ(x) = (ϕ1, . . . , ϕD)

where D > m.
• Train an SVM on the transformed data:

{(ϕ(x)1, y1), . . . , (ϕ(x)N , yN)}
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Optimization problem

Using the transformations we now need to maximize the following
dual Lagrangian:

L̃(α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyj(ϕ(xi) · ϕ(xj))

Problem:

• Dimension D of the feature space can be very large in practice
• Determining the hyperplane solution requires multiple inner

product computations in this high dimensional feature space,
which can be very costly

→ Use the kernel trick!
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The Kernel Trick



Inner products

Recall: Training an SVM involves maximizing the following
function:

L̃(α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyj(ϕ(xi) · ϕ(xj))

We need to compute the inner products ϕ(xi) · ϕ(xj) in the feature
space.

We are not really interested in the quantities ϕ(xi) as such!

→ Instead of explicitly defining a non-linear feature map ϕ and
computing the resulting inner product, we define a similarity
function K (xi , xj) between xi and xj , which implicitly defines ϕ.
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Kernel function

Given a transformation ϕ : Rm → RD from input space Rm to
feature space RD, the function K : Rm × Rm → R defined by

K (xi , xj) = ϕ(xi) · ϕ(xj), xi , xj ∈ Rm

is called the kernel function of ϕ.

Generally: kernel function may refer to any function
K : Rm × Rm → R that measures the similarity of vectors in Rm

without explicitly defining a transform ϕ.
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Kernel function for optimization

For a choice of kernel K (xi , xj) = ϕ(xi) · ϕ(xj) we train an SVM by
maximizing

L̃(α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi , xj)

Computing K (xi , xj) can be done without computing the mappings
ϕ(xi) and ϕ(xj).

This way of training a SVM in feature space without explicitly
computing the mappings ϕ is called the kernel trick.
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Example

Define ϕ : R2 → R6 by

ϕ((x1, x2)⊤) = (x2
1 , x2

2 ,
√

2x2
1 x2

2 ,
√

2x2
1 ,

√
2x2

2 , 1)⊤

The inner product in the feature space is

ϕ((x1, x2)⊤) · ϕ((x ′
1, x ′

2)⊤) = (x1x ′
1 + x2x ′

2 + 1)2

Thus, we can directly define a kernel function K : R2 × R2 → R by

K (x1, x2) = (x1x ′
1 + x2x ′

2 + 1)2
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Example: XOR function

(a) XOR Problem linearly non-separable in the input space. (b) Points
are mapped to the six-dimensional space defined by second degree
polynomial (here projection of these points on the two-dimensional space
defined by their third and fourth coordinates). The problem becomes
separable by the hyperplane x1, x2 = 0.

Image was taken from [MT18] 28



Useful kernel functions

• Polynomial kernel:

K (x1, x2) = (x1 · x2 + 1)d

where d denotes the degree of the polynomial and is a
hyperparameter.

• Gaussian kernel:

K (x1, x2) = exp
(

−∥x1 − x2∥2

2σ2

)
where σ is a hyperparameter.

• Sigmoid kernels:

K (x1, x2) = tanh(a(x1 · x2) + b)

where a and b are hyperparameters.

29



Example: SVM with Gaussian kernel

Image was taken from [DFO20] 30



Example: SVM with polynomial (degree 2) kernel

Image was taken from [DFO20] 31



Example: SVM with polynomial (degree 3) kernel

Image was taken from [DFO20] 32



Choosing suitable kernel functions

Kernel function is a hyperparameter.

The choice depends on a problem at hand.

Try several common ones and choose the one with the best results
on the validation set.

If in doubt - use a Gaussian!
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