
Support Vector Machines

Elena Trunz
September 18, 2023

Uni Bonn

Overview

Introduction

Linearly Separable Data

Soft-margin SVM

Non-Linearly Separable Data

The Kernel Trick

1

Introduction

Classification

Given:

• Training data: example-label pairs: {(x1, y1), . . . , (xN , yN)}
• Inputs xi ∈ Rm

• Target labels yj ∈ Y = {t1, . . . , tK }, K = number of classes

Find: Classifier (hypothesis) f : Rm → Y , with small generalization
error.

2

Classification algorithm

Idea:

1. Represent input data in Rm

2. Partition the space, such that only the examples with the
same label are in the same partition

3

Binary classification

Only two classes: Y = {−1, +1}

Image was taken from [DFO20] 4

What is the best classifier?

5

What about this data?

Image was taken from [DFO20] 6

Linearly Separable Data

Narrow down the search

What is the best classifier here?

• Occam’s razor principle: When presented with competing
hypotheses about the same prediction, use the less complex
one (fewer parameters, fewer assumptions etc.)

→ Use linear classifiers (hyperplanes) as a hypothesis set

7

Hyperplane partition

Hyperplane: affine subspace of dimension m − 1: Set of points,
such that

H = {x|w · x + b = 0},

where w ∈ Rm is a non-zero vector normal to the hyperplane and
b ∈ R is a scalar (b is the intercept):

Image was taken from [DFO20] 8

Hyperplane partition: classification

Classifying a test example xt :

• Calculate f (xt) := w · xt + b
• Classify xt as +1 if f (xt) ≥ 0
• Classify xt as −1 if f (xt) < 0

→ We must find w and b, such that for all training points holds:
• f (xn) ≥ 0 for points having yn = +1
• f (xn) < 0 for points having yn = −1
→ ynf (xn) ≥ 0

9

Many candidate hyperplanes

Which hypothesis is the best one?

• We should try to find the classifier that will give the smallest
generalization error!

• Idea: Our classifier should not ”favor” any class
→ Choose the hyperplane with equally large (maximum) distance

to each class
Image was taken from [DFO20] 10

The margin

What is the distance between a hyperplane and a class?

It is called the margin and is defined as the perpendicular distance
between the hyperplane and the closest of the data points

If x is the point closest to the hyperplane, then ∥d∥2 is the margin.

It holds:
∥d∥2 = |w · x + b|

∥w∥
Image was taken from [DFO20] 11

Calculating the margin

The margin of H with respect to the dataset D can be calculated
as follows:

γ(w, b) = min
x∈D

|w · x + b|
∥w∥

12

Maximizing the margin

We are interested in hyperplanes for which all training points are
correctly classified

→ ynf (xn) ≥ 0 must hold for our margin!

Thus, the maximum margin solution is found by solving

argmax
w,b

γ(w, b) or

argmax
w,b

{
1

∥w∥min
x∈D

|w · x + b|
}

subject to yn(w · x + b) ≥ 0, for all n = 1, . . . , N.

13

Maximizing the margin (2)

• Observation 1: Above optimizaiton problem is too complex to
solve

• Observation 2: Rescaling w → cw and b → cb would not
change the distance from the hyperplane to any point

→ We can restrict ourselves to pairs (w, b) scaled such that
min
x∈D

|w · x + b| = 1

We can combine this constraint with the previous ones.

In this case all training points will have to satisfy the constraints:
yn(w · xn + b) ≥ 1:

14

Maximizing the margin (3)

Combining the margin maximization with the fact that the
examples need to be on the correct side of the hyperplane gives us

argmax
w,b

1
∥w∥ ,

subject to yn(w · x + b) ≥ 1, for all n = 1, . . . , N.

Instead of maximizing the reciprocal of the norm, we often
minimize the squared norm:

argmin
w,b

∥w∥2,

subject to yn(w · x + b) ≥ 1, for all n = 1, . . . , N.

→ This optimization problem is known as the hard margin SVM.

15

Solving hard margin SVM

Hard margin SVM is a convex quadratic programming (QP)
problem.

A variety of commercial and open-source solvers are available for
solving convex QP problems.

Maximum-margin hyperplane solution. Dashed lines are the marginal
hyperplanes. The points on them are support vectors.

Support vectors satisfy yn(w · xn + b) = 1.
Image was taken from [LDP19] 16

Soft-margin SVM

What hyperplane best separates this data?

Linear separation is possible, but with some errors.

17

Slack variable

To be able to deal with noise, we can soften the hard constraints
of our optimization and allow for some slack

Slack variable ξ measures the distance of an example x+ when it is on
the wrong side.

Image was taken from [DFO20] 18

Soft-margin SVM problem

argmin
w,b

∥w∥2 + C
∑N

n=1 ξn,

subject to yn(w · x + b) ≥ 1 − ξn, for all n = 1, . . . , N.

and ξn ≥ 0, for all n = 1, . . . , N.

The parameter C is a hyperparameter that controls the
regularization.

19

Non-Linearly Separable Data

What hyperplane best separates this data?

Linear separation is not possible!

Image was taken from [MT18] 20

Transformation for separation

While the data may not be linear separable in the input space, it
may be in a feature space, after a fancy transormation ϕ:

Left: the input space. Right: the feature space.

Image was taken from [MT18] 21

Non-linear SVM

Idea: instead of tweaking the definition of SVM to accomodate
non-linear decision boundaries, gain linearly separation by mapping
the input data to a higher dimensional feature space, where the
classes are linearly separable:

• Apply transform ϕ : Rm → RD on training data

x = (x1, . . . , xm)⊤ 7→ ϕ(x) = (ϕ1, . . . , ϕD)

where D > m.
• Train an SVM on the transformed data:

{(ϕ(x)1, y1), . . . , (ϕ(x)N , yN)}

22

Optimization problem

Using the transformations we now need to maximize the following
dual Lagrangian:

L̃(α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyj(ϕ(xi) · ϕ(xj))

Problem:

• Dimension D of the feature space can be very large in practice
• Determining the hyperplane solution requires multiple inner

product computations in this high dimensional feature space,
which can be very costly

→ Use the kernel trick!

23

The Kernel Trick

Inner products

Recall: Training an SVM involves maximizing the following
function:

L̃(α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyj(ϕ(xi) · ϕ(xj))

We need to compute the inner products ϕ(xi) · ϕ(xj) in the feature
space.

We are not really interested in the quantities ϕ(xi) as such!

→ Instead of explicitly defining a non-linear feature map ϕ and
computing the resulting inner product, we define a similarity
function K (xi , xj) between xi and xj , which implicitly defines ϕ.

24

Kernel function

Given a transformation ϕ : Rm → RD from input space Rm to
feature space RD, the function K : Rm × Rm → R defined by

K (xi , xj) = ϕ(xi) · ϕ(xj), xi , xj ∈ Rm

is called the kernel function of ϕ.

Generally: kernel function may refer to any function
K : Rm × Rm → R that measures the similarity of vectors in Rm

without explicitly defining a transform ϕ.

25

Kernel function for optimization

For a choice of kernel K (xi , xj) = ϕ(xi) · ϕ(xj) we train an SVM by
maximizing

L̃(α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi , xj)

Computing K (xi , xj) can be done without computing the mappings
ϕ(xi) and ϕ(xj).

This way of training a SVM in feature space without explicitly
computing the mappings ϕ is called the kernel trick.

26

Example

Define ϕ : R2 → R6 by

ϕ((x1, x2)⊤) = (x2
1 , x2

2 ,
√

2x2
1 x2

2 ,
√

2x2
1 ,

√
2x2

2 , 1)⊤

The inner product in the feature space is

ϕ((x1, x2)⊤) · ϕ((x ′
1, x ′

2)⊤) = (x1x ′
1 + x2x ′

2 + 1)2

Thus, we can directly define a kernel function K : R2 × R2 → R by

K (x1, x2) = (x1x ′
1 + x2x ′

2 + 1)2

27

Example: XOR function

(a) XOR Problem linearly non-separable in the input space. (b) Points
are mapped to the six-dimensional space defined by second degree
polynomial (here projection of these points on the two-dimensional space
defined by their third and fourth coordinates). The problem becomes
separable by the hyperplane x1, x2 = 0.

Image was taken from [MT18] 28

Useful kernel functions

• Polynomial kernel:

K (x1, x2) = (x1 · x2 + 1)d

where d denotes the degree of the polynomial and is a
hyperparameter.

• Gaussian kernel:

K (x1, x2) = exp
(

−∥x1 − x2∥2

2σ2

)
where σ is a hyperparameter.

• Sigmoid kernels:

K (x1, x2) = tanh(a(x1 · x2) + b)

where a and b are hyperparameters.

29

Example: SVM with Gaussian kernel

Image was taken from [DFO20] 30

Example: SVM with polynomial (degree 2) kernel

Image was taken from [DFO20] 31

Example: SVM with polynomial (degree 3) kernel

Image was taken from [DFO20] 32

Choosing suitable kernel functions

Kernel function is a hyperparameter.

The choice depends on a problem at hand.

Try several common ones and choose the one with the best results
on the validation set.

If in doubt - use a Gaussian!

33

Literature

References

[DFO20] Marc Peter Deisenroth, A. Aldo Faisal, and
Cheng Soon Ong. Mathematics for Machine Learning.
Cambridge University Press, 2020.

[LDP19] R LakshmanNaika, R. Dinesh, and S Prabhanjan.
“Handwritten Electric Circuit Diagram Recognition: An
Approach Based on Finite State Machine.” In:
International Journal of Machine Learning and
Computing (2019).

[MT18] Afshin Rostamizadeh Mehryar Mohri and
Ameet Talwalkar. Foundations of Machine Learning.
The MIT Press, 2018.

34

	Introduction
	Linearly Separable Data
	Soft-margin SVM
	Non-Linearly Separable Data
	The Kernel Trick

