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Introduction



Unsupervised learning

= Sometimes our data consists of input vectors without
corresponding target labels.

= Unlabled data

= Unsupervised learning is concerned with discovering structure
in unlabeled data.

= Goals:

— Discover groups of similar examples within the data
(Clustering)

— Determine the distribution of data within the input space
(Density estimation)

— Project the data onto a lower dimensional space
(Dimensionality reduction)



What is Clustering?

= Clustering is the process of organizing a set of physical or
abstract objects into classes (called clusters), such that there
is

= High intra-class similarity
= Low inter-class similarity
= Finding the class labels and the number of classes directly

from the data (in contrast to classification).

= More informally: Finding natural groupings among objects.



What is a natural grouping among these objects?




What is a natural grouping among these objects?

Clustering is subjective
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What is similarity?

Definition: Let U be the universe of possible objects. The
distance (dissimilarity, metric) on U is a function d: U x U — R
that satisfies the following conditions (axioms):

d(a,b)=0<a=0>b Identity of indiscernibles
d(a,b) = d(b, a) Symmetry
d(a,c) < d(a, b) + d(b,c) Triangle inequality



L1 vs. L2 distance




L2 on images

Distance metrics on pixels are not informative!

Original Shifted Tinted

All 3 images have same L2 distance to the one on the left



Other distance measures

Data dependent!

= Images:
= Structural similarity (SSIM)
= Histogram of Oriented Gradients (HOG)
= Cosine similarity
= Normalized Cross-Correlation

Shape based data: Chamfer distance

= Sphere: Haversine formula

Text: Edit distance, Cosine similarity

= Many more...



= Measures percieved similarity between images

= Measurement of image quality is based on an initial

uncompressed image as a reference

= Compares luminance, contrast and structure

Original image Image with noise Image plus constant

200 300 400 500 0 100 200 300 400 500 0 100 200 300 400
MSE: 0.00, SSIM: 1.00 MSE: 0.04, SSIM: 0.15 MSE: 0.04, S5IM: 0.85
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Clustering procedure

Input:
» Data set X = {xy,...,xn}, x € R™ of unlabeled observations

of random m-dimensional variable x.

Procedure:

1. Make suitable assumptions (e.g. about the structure of the
data)
2. Find optimal cluster representations with respect to the

assumptions

3. Assign data points to the clusters
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K-means



K-means: problem formulation

Assumptions:

= Euclidean distance as similarity measure

= Number K of clusters
Find:

= Set of cluster centers {uk},}le we will write {-} instead of {-}<_

= Assignment of data points from X to a cluster

in order to minimize the following objective function:
N K
2
J=Y"" ruellxi — mll?,
i=1 k=1

where ry € {0,1} is a binary variable, called the assignment, which
is 1 iff x; is assigned to cluster k.

12



Example data set

= "Old Faithful” dataset
= 272 measurements of the eruption of the Old Faithful geyser
at Yellowstone National Park (USA)

Old Faithful Geyser: Eruption length vs. waiting time
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K-means algorithm:

How can we find the values for {ri} and {g,} so as to minimize
K
J=20 ridlxi — miel??
i=1 k=1
Idea: Choose some initial values for the {g, }. Then iterate
between two steps until convergence:
1. Minimize J with respect to the {rj}, keeping the {p,} fixed.
2. Minimize J with respect to the {u,}, keeping the {ri} fixed.

Updating {ri} corresponds to the E (expectation) step and updating {p, }
corresponds to the M (maximization) step of the Expectation-Maximization

algorithm (will be discussed later).
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E step: determination of the {r;}

= Jis a linear function of rj
— Easy to give a closed form solution
= The terms involving different i are independent, so we can
optimize for each data point separately

— Simply assign each data point to the closest cluster center

= Formally:

1if k = argmin; ||x; — p;]|?
Fik =
0 otherwise.
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M step: optimization of the {y,}

= J is a quadratic function of p,
= To find the minimum we compute the derivative with respect

to ;. and set it to zero:

N

22 r,-k(x,- — uk) =0

i=1
= Solving this equation for p, gives

Z likXi
= E FikX;
l"l’k Z rik 4 ik,

where N, = number of points assigned to cluster k.

— py, = mean of all data points x; assigned to cluster k
— For this reason it is called K-means algorithm.
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K-means

= E step and M step are repeated until there is no further
change in the assignments (or some maximum number of
iterations is reached)

= Algorithm converges, because each step reduces the value of
the objective function J

= However it may converge to a local minimum of J instead of

global one
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K-means: preprocessing

Features (dimensions) can have different scales

— One or more dimensions will dominate the distance
calculations

— It is important to preprocess the data

Standardization: linear re-scaling of the data, so that it has zero
mean and unit variance
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Example: initialization

Standardized Old Faithful dataset:
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Initialization with two means

Image was taken from [Bis06]

19



Example: first iteration

E step (left) and M step (right)

Image was taken from [Bis06] 20



Example: second iteration

2t (d)

g0, ¥,
-2 *

E step (left) and M step (right)

Image was taken from [Bis06] 21



Example: third iteration

21 (9) .

o0, ¥
%“
-2 *

-2 0 2 -2 0 2

E step (left) and M step (right). Algorithm has converged, positions of
the means didn't change.

Image was taken from [Bis06] 22



Example: objective function

1000

500

1 2 3 4

Plot of the function J after each E step (blue points) and M step (red
points).

Image was taken from [Bis06] 23



Initialization

= A good initialization of the cluster centers is to choose a
random subset of K data points
= J is generally a non-convex function

— Run the algorithm with different initializations and post-select
the best local minimum
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K-means for segmentation

Original image

s

Image was taken from [Bis06] 25



Strengths and Weaknesses of the K-means method

Strengths:

= Guaranteed to converge, although often to a local minimum
= Relatively efficient: computational complexity scales linearly in
the size of the data set (O(KN) per iteration)
— Can deal with very large datasets

Drawbacks:

= Applicable only when mean is defined
— Not suitable for categorical data

= Need to specify K in advance

= Non-robust to noisy data and outliers

= Not suitable for clusters, which have very different variances,
since the underlying assumption is that all clusters have

uniform variances
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Limitation: different variances

K-means Clustering Results

. % Cluster Centers

Feature 2

-4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3
Feature 1

K-means tries to build circular clusters, but the data distribution is
elliptical.
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Hard cluster assignments

= At each iteration K-means assigns each data point exactly to
one of the clusters.

= There may be data points that lie roughly midway between
cluster centers

= Idea: Use probabilistic approach to obtain "soft” assignments
of data points to clusters and reflect the level of uncertainty
over the most appropriate assignment

— Mixture Models
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Gaussian Mixture Models




= Each point of the dataset X was drawn from an unknown
distribution

= Assumption about the structure of the dataset: the data X
was drawn from K Gaussians

= Each cluster is then characterized by some mean and variance

= Rather than identifying clusters by nearest centroids, fit a set
of K Gaussians to the data

— Density estimation
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Multivariate Gaussian distribution

Recall: one-dimensional (univariate) Gaussian distribution:

N(x|p,0) = \/2176xp <_Zi2(x _ M)2>

with mean p and variance o2.

Multivariate Gaussian for a m-dimensional vector x:

ST

1
VenyrE <‘2
)

determinant

N(x[p, E) =

with mean p € R™ and covariance matrix X € R™*™,
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Why do we need a set of Gaussians?

Often a simple Gaussian distribution is unable to capture the
structure of a data set, whereas a linear superposition of several
Gaussians gives a good characterization

100 100

80 80

60 60

40 40
1 2 3 4 5 6 1 2 3 4 5 6

Image was taken from [Bis06] 31



Gaussian mixture distribution

Linear superposition of K Gaussian densities is called mixture of
Gaussians and has the form

K
Pk, i mic}) = D mieN (x| gy, Zie)
k=1

The parameters 7, are called mixture weights or mixing
coefficients.
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Gaussian mixture distribution: example

With sufficient number of Gaussians (with adjusted means,
covariances and weights), almost any continuous density can be
approximated to arbitrary accuracy.

0.30

-=-= Component 1
=== Component 2
025 omponent
-=- Component 3
—— GMM density
0.20
=015
By
0.10

0.05

0.00

Weighted components and the mixture density, which is given as

p(x|{pks Tk, 7k }) = 0.5N (x| — 2, %)—1—0.2,\'(><\1. 2)+0.3N(x|4,1)

Image was taken from [DFO20] 33



GMM for clustering

In order to use GMM for clustering we need to solve two problems

1. Find a good representation (approximation) of the real density
by a GMM

2. Find cluster assignments
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GMM for density estimation

Let 7, denote the probability that a data point is drawn from a

mixture component k.

Then the probability of generating a point x in a GMM is given by

K
p(x‘{u’ka Zlﬂﬂ—k}) = Z WkN(X’[,Lk, Zk)
k=1
We can write likelihood of our dataset X as

N

L= p(X{pi, i, 7 }) = ] pxil{1ser e 7k })
i=1
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GMM for density estimation (2)

Taking the logarithm helps to get rid of the products:

N K
L= Inp(X|[{se T me}) = D In D~ miN (x|, Zie)
n=1 k=1

In order to find the best GMM approximation of the real density
from which X was drawn, we need to find such parameters
{1, Xk, Tk} that maximize this likelihood.
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GMM for clustering

In order to use GMM for clustering we introduce a K-dimensional

binary random variable z for each data point x.

Its k-th component is 1, if point x was generated from the k-th
cluster and zero otherwise (one-hot encoding).

Then p(zx = 1) = mx and 33K 7 = 1.
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GMM for clustering (2)

Suppose, we already know the parameters {p,, X, m} of our
GMM.

Then in order to assign clusters to our data points, for each data
point x; we are interested in the conditional probability of x; being
in the k-th cluster:

p(zx = 1)p(xi|zx = 1)
Y11 p(zi = 1)p(xilz = 1)
_ mN(xilpg, i)

SrC s TN (xilug, Ej)

p(zi = Lix)) =

=: (zik)

Tk is the prior probability of zx = 1 and 7(zj) is the posterior
probability once x; was observed.
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GMM for clustering (3)

~(zix) is viewed as the responsibility that component k takes for
"explaining” the observation x;.

In order to determine the final assignment, each data point is
assigned to the cluster with the largest probability: arg maxxy(z)
over the responsibilities.

The problem is, we do not know the parameters of the underlying
GMM.

— Expectation-Maximization algorithm
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Expectation Maximization




EM: Problem formulation

Assumption:

= Gaussian mixture model as underlying distribution

= Number K of mixture components (clusters)
Find:

= Set of K mixture components defined by means {z,} and
covariances {Xy}

= Mixture weights {m}

= Assignments of data points from X to clusters

in order to maximize the following objective function:

N K
L= Inp(X[{pse; T me}) = D In D mN (x|, Zio)
k=1

n=1 —
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EM algorithm

1. Initialize {gs, Xk, Tk} and evaluate the initial value of the log
likelihood.

2. E step: Evaluate the responsibilities {7(zj)}, keeping the
{,Ll,k, Zk, 7Tk} fixed.

3. M step: Maximize L with respect to the {p,, Xk, 7k},
keeping the {v(zi)} fixed.

4. Repeat E step and M step until convergence.
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Maximizing the likelihood

Calculating partial derivatives of L with respect to the means g,
setting them to zero and rearranging we obtain:

1N
My = ﬁk ;’Y(Zik)xi

where N, = S-N . 4(zj) is the number of points assigned to
cluster k.

With similar calculations we get:
1N
2= N > Az (xi — i) (xi — pg) "
i=1

and
_ Ne
T = N
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Density estimation example: Initialization

Given 1-D dataset X = {—3,-2.5,-1,0,2,4,5} and K = 3.
Initialize the mixture components as

pi(x) = N(x| - 4,1)

p2(x) = N(x]0,0.2)

p3(x) = N(x[8,3)
1

and their weights as 1, = 7 = 73 = 3-

0.30

)
2 03)
. TN (alp3, 03)
—— GMM density

Image was taken from [DFO20] 43



Density estimation example: E step

N (alus, o3
—— GMM density

1 0 0
1 0 0
0.057 0.943 0
Responsibilities are | 0.001 0.999 0 € RVxK
0 0.066 0.934
0 0 1
0 0 1

Image was taken from [DFO20] 44



M step: Updating the means

p1 i —4 — =27
w0 — —04
u3 8 — 3.7

0.30 e mN (|, 0?) 030 e MmN (2|0

: -—- (2|2, 73) N (a2, 03)

0.25 - |, 73) 0.25 - wN(elus,o3)

IMM density —— GMM density
0.20 0.20
Eo1s Zo15
0.10 0.10
0.05 0.05
0.00 0.00

Density before updating the means (left) and after (right).

Image was taken from [DFO20]
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Updating the variances

02:1—0.14
03:0.2 — 0.44
03:3 153
0.3 - mN (|, 03) 0.35
N (|2, 73)
0.25 e (‘,‘ng) 0.30
—— GMM density 0.25

N (el oF)

/(elpa, 03)
-—— N (z|p3,03)
—— GMM density

Density before updating the variances (left) and after (right).

Image was taken from [DFO20]
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Updating the weights

1

m 3 — 0.29
1

T 3 — 0.29
1

m3 3 — 0.42

Density before updating the weights (left) and after (right).

Image was taken from [DFO20]
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Density estimation example: final GMM fit

P : 28
0.30 === aN(dpm,ot) g
=P
0.25 8
=
0.20 £
= 22
=0.15 2
© 20
g
0.10 B
gﬁl%
0.05 Zi16
\
{ ¥
0.00 SC=CC— 14
5 0 5 10 15 0 1 p) 3 1 5

Iteration

Left: After five iteration the EM algorithm has converged. Right:
Negative log-likelihood

Image was taken from [DFO20] 48



Clustering example

2 . 2
g
&
© [}
0 ° . :h‘ “ 0
I 7 LI
e ' o
K~
) 1 -2
-2 0 (a) 2 -2 0

(b) 2 -2 0 (c) 2

(a) Initialization, (b) E step, (c) M step

Image was taken from [Bis06]
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Clustering example (2)

2 2 .
L=20 %22
L]
0 0 N
.':' o, T
L/
. he®
-2 2 W
-2 0 (e) 2 -2 0 () 2

-2 0 (d) 2
Results after 2, 5 and 20 iterations. After 20 iterations the algorithm is

close to convergence.
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Image was taken from [Bis06]



GMM vs. K-means

= In order to assign points to clusters, GMM does not use a
distance measure, but applies a probability distribution around
the cluster centers

— GMM handles outliers easier than K-means
— GMM can analyze more complex and mixed data

= EM algorithm requires many more iterations to reach
convergence than K-means

= Each iteration of EM requires significantly more computations

Hil}



GMM vs. K-means (2)

GMM Cluster
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Initialization

K-means is "cheap”, EM is "expensive”

— Run K-means to find suitable GMM initialization for EM

= [nitialize the means with the means found by K-means
= |nitialize the covariance matrices with the sample covariances

of the clusters found by K-means
= [nitialize the weights with the fractions of data points assigned

to respective clusters
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