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Introduction



Unsupervised learning

• Sometimes our data consists of input vectors without
corresponding target labels.

⇒ Unlabled data

• Unsupervised learning is concerned with discovering structure
in unlabeled data.

• Goals:
→ Discover groups of similar examples within the data

(Clustering)
→ Determine the distribution of data within the input space

(Density estimation)
→ Project the data onto a lower dimensional space

(Dimensionality reduction)
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What is Clustering?

• Clustering is the process of organizing a set of physical or
abstract objects into classes (called clusters), such that there
is

• High intra-class similarity
• Low inter-class similarity

• Finding the class labels and the number of classes directly
from the data (in contrast to classification).

• More informally: Finding natural groupings among objects.
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What is a natural grouping among these objects?
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What is a natural grouping among these objects?

Clustering is subjective
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What is similarity?

Definition: Let U be the universe of possible objects. The
distance (dissimilarity, metric) on U is a function d : U × U → R
that satisfies the following conditions (axioms):

d(a, b) = 0 ⇔ a = b Identity of indiscernibles
d(a, b) = d(b, a) Symmetry
d(a, c) ≤ d(a, b) + d(b, c) Triangle inequality
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L1 vs. L2 distance
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L2 on images

Distance metrics on pixels are not informative!

All 3 images have same L2 distance to the one on the left
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Other distance measures

Data dependent!

• Images:
• Structural similarity (SSIM)
• Histogram of Oriented Gradients (HOG)
• Cosine similarity
• Normalized Cross-Correlation

• Shape based data: Chamfer distance
• Sphere: Haversine formula
• Text: Edit distance, Cosine similarity
• Many more...
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SSIM

• Measures percieved similarity between images
• Measurement of image quality is based on an initial

uncompressed image as a reference
• Compares luminance, contrast and structure
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Clustering procedure

Input:

• Data set X = {x1, . . . , xN}, x ∈ Rm of unlabeled observations
of random m-dimensional variable x.

Procedure:

1. Make suitable assumptions (e.g. about the structure of the
data)

2. Find optimal cluster representations with respect to the
assumptions

3. Assign data points to the clusters
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K-means



K-means: problem formulation

Assumptions:

• Euclidean distance as similarity measure
• Number K of clusters

Find:

• Set of cluster centers {µk}K
k=1 we will write {·} instead of {·}K

k=1

• Assignment of data points from X to a cluster

in order to minimize the following objective function:

J =
N∑

i=1

K∑
k=1

rik ||xi − µk ||2,

where rik ∈ {0, 1} is a binary variable, called the assignment, which
is 1 iff xi is assigned to cluster k.
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Example data set

• ”Old Faithful” dataset
• 272 measurements of the eruption of the Old Faithful geyser

at Yellowstone National Park (USA)
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K-means algorithm:

How can we find the values for {rik} and {µk} so as to minimize

J =
N∑

i=1

K∑
k=1

rik ||xi − µk ||2?

Idea: Choose some initial values for the {µk}. Then iterate
between two steps until convergence:

1. Minimize J with respect to the {rik}, keeping the {µk} fixed.
2. Minimize J with respect to the {µk}, keeping the {rik} fixed.

Updating {rik} corresponds to the E (expectation) step and updating {µk}
corresponds to the M (maximization) step of the Expectation-Maximization
algorithm (will be discussed later).
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E step: determination of the {rik}

• J is a linear function of rik

→ Easy to give a closed form solution
• The terms involving different i are independent, so we can

optimize for each data point separately
→ Simply assign each data point to the closest cluster center

• Formally:

rik =

1 if k = arg minj ||xi − µj ||2

0 otherwise.
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M step: optimization of the {µk}

• J is a quadratic function of µk

• To find the minimum we compute the derivative with respect
to µk and set it to zero:

2
N∑

i=1
rik(xi − µk) = 0

• Solving this equation for µk gives

µk =
∑

i rikxi∑
i rik

= 1
Nk

N∑
i=1

rikxi ,

where Nk = number of points assigned to cluster k.
→ µk = mean of all data points xi assigned to cluster k
→ For this reason it is called K-means algorithm.
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K-means

• E step and M step are repeated until there is no further
change in the assignments (or some maximum number of
iterations is reached)

• Algorithm converges, because each step reduces the value of
the objective function J

• However it may converge to a local minimum of J instead of
global one
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K -means: preprocessing

Features (dimensions) can have different scales

→ One or more dimensions will dominate the distance
calculations

→ It is important to preprocess the data

Standardization: linear re-scaling of the data, so that it has zero
mean and unit variance
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Example: initialization

Standardized Old Faithful dataset:

Initialization with two means

Image was taken from [Bis06] 19



Example: first iteration

E step (left) and M step (right)

Image was taken from [Bis06] 20



Example: second iteration

E step (left) and M step (right)

Image was taken from [Bis06] 21



Example: third iteration

E step (left) and M step (right). Algorithm has converged, positions of
the means didn’t change.

Image was taken from [Bis06] 22



Example: objective function

Plot of the function J after each E step (blue points) and M step (red
points).

Image was taken from [Bis06] 23



Initialization

• A good initialization of the cluster centers is to choose a
random subset of K data points

• J is generally a non-convex function
→ Run the algorithm with different initializations and post-select

the best local minimum
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K -means for segmentation

Image was taken from [Bis06] 25



Strengths and Weaknesses of the K-means method

Strengths:

• Guaranteed to converge, although often to a local minimum
• Relatively efficient: computational complexity scales linearly in

the size of the data set (O(KN) per iteration)
→ Can deal with very large datasets

Drawbacks:
• Applicable only when mean is defined

→ Not suitable for categorical data
• Need to specify K in advance
• Non-robust to noisy data and outliers
• Not suitable for clusters, which have very different variances,

since the underlying assumption is that all clusters have
uniform variances
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Limitation: different variances

K -means tries to build circular clusters, but the data distribution is
elliptical.
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Hard cluster assignments

• At each iteration K -means assigns each data point exactly to
one of the clusters.

• There may be data points that lie roughly midway between
cluster centers

• Idea: Use probabilistic approach to obtain ”soft” assignments
of data points to clusters and reflect the level of uncertainty
over the most appropriate assignment

→ Mixture Models
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Gaussian Mixture Models



Idea:

• Each point of the dataset X was drawn from an unknown
distribution

• Assumption about the structure of the dataset: the data X
was drawn from K Gaussians

• Each cluster is then characterized by some mean and variance
• Rather than identifying clusters by nearest centroids, fit a set

of K Gaussians to the data
→ Density estimation
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Multivariate Gaussian distribution

Recall: one-dimensional (univariate) Gaussian distribution:

N (x |µ, σ) = 1√
2πσ2

exp
(

− 1
2σ2 (x − µ)2

)
with mean µ and variance σ2.

Multivariate Gaussian for a m-dimensional vector x:

N (x|µ, Σ) = 1√
(2π)m|Σ|

exp
(

−1
2(x − µ)⊤Σ−1(x − µ)

)
↑

determinant

with mean µ ∈ Rm and covariance matrix Σ ∈ Rm×m.
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Why do we need a set of Gaussians?

Often a simple Gaussian distribution is unable to capture the
structure of a data set, whereas a linear superposition of several
Gaussians gives a good characterization

Image was taken from [Bis06] 31



Gaussian mixture distribution

Linear superposition of K Gaussian densities is called mixture of
Gaussians and has the form

p(x|{µk , Σk , πk}) =
K∑

k=1
πkN (x|µk , Σk)

The parameters πk are called mixture weights or mixing
coefficients.
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Gaussian mixture distribution: example

With sufficient number of Gaussians (with adjusted means,
covariances and weights), almost any continuous density can be
approximated to arbitrary accuracy.

Weighted components and the mixture density, which is given as

p(x |{µk , Σk , πk}) = 0.5N (x | − 2,
1
2)+0.2N (x |1, 2)+0.3N (x |4, 1)

Image was taken from [DFO20] 33



GMM for clustering

In order to use GMM for clustering we need to solve two problems

1. Find a good representation (approximation) of the real density
by a GMM

2. Find cluster assignments
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GMM for density estimation

Let πk denote the probability that a data point is drawn from a
mixture component k.

Then the probability of generating a point x in a GMM is given by

p(x|{µk , Σk , πk}) =
K∑

k=1
πkN (x|µk , Σk)

We can write likelihood of our dataset X as

L = p(X|{µk , Σk , πk}) =
N∏

i=1
p(xi |{µk , Σk , πk})
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GMM for density estimation (2)

Taking the logarithm helps to get rid of the products:

L = ln p(X|{µk , Σk , πk}) =
N∑

n=1
ln

K∑
k=1

πkN (x|µk , Σk)

In order to find the best GMM approximation of the real density
from which X was drawn, we need to find such parameters
{µk , Σk , πk} that maximize this likelihood.
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GMM for clustering

In order to use GMM for clustering we introduce a K -dimensional
binary random variable z for each data point x.

Its k-th component is 1, if point x was generated from the k-th
cluster and zero otherwise (one-hot encoding).

Then p(zk = 1) = πk and ∑K
k=1 πk = 1.
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GMM for clustering (2)

Suppose, we already know the parameters {µk , Σk , πk} of our
GMM.

Then in order to assign clusters to our data points, for each data
point xi we are interested in the conditional probability of xi being
in the k-th cluster:

p(zk = 1|xi) = p(zk = 1)p(xi |zk = 1)∑K
j=1 p(zj = 1)p(xi |zj = 1)

= πkN (xi |µk , Σk)∑K
j=1 πjN (xi |µj , Σj)

=: γ(zik)

πk is the prior probability of zk = 1 and γ(zik) is the posterior
probability once xi was observed.
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GMM for clustering (3)

γ(zik) is viewed as the responsibility that component k takes for
”explaining” the observation xi .

In order to determine the final assignment, each data point is
assigned to the cluster with the largest probability: arg maxkγ(zik)
over the responsibilities.

The problem is, we do not know the parameters of the underlying
GMM.

→ Expectation-Maximization algorithm
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Expectation Maximization



EM: Problem formulation

Assumption:

• Gaussian mixture model as underlying distribution
• Number K of mixture components (clusters)

Find:

• Set of K mixture components defined by means {µk} and
covariances {Σk}

• Mixture weights {πk}
• Assignments of data points from X to clusters

in order to maximize the following objective function:

L = ln p(X|{µk , Σk , πk}) =
N∑

n=1
ln

K∑
k=1

πkN (x|µk , Σk)
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EM algorithm

1. Initialize {µk , Σk , πk} and evaluate the initial value of the log
likelihood.

2. E step: Evaluate the responsibilities {γ(zik)}, keeping the
{µk , Σk , πk} fixed.

3. M step: Maximize L with respect to the {µk , Σk , πk},
keeping the {γ(zik)} fixed.

4. Repeat E step and M step until convergence.
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Maximizing the likelihood

Calculating partial derivatives of L with respect to the means µk ,
setting them to zero and rearranging we obtain:

µk = 1
Nk

N∑
i=1

γ(zik)xi

where Nk = ∑N
i=1 γ(zik) is the number of points assigned to

cluster k.

With similar calculations we get:

Σk = 1
Nk

N∑
i=1

γ(zik)(xi − µk)(xi − µk)⊤

and
πk = Nk

N
42



Density estimation example: Initialization

Given 1-D dataset X = {−3, −2.5, −1, 0, 2, 4, 5} and K = 3.

Initialize the mixture components as

p1(x) = N (x | − 4, 1)
p2(x) = N (x |0, 0.2)
p3(x) = N (x |8, 3)

and their weights as π1 = π2 = π3 = 1
3 .

Image was taken from [DFO20] 43



Density estimation example: E step

Responsibilities are



1 0 0
1 0 0

0.057 0.943 0
0.001 0.999 0

0 0.066 0.934
0 0 1
0 0 1


∈ RN×K

Image was taken from [DFO20] 44



M step: Updating the means

µ1 : −4 → −2.7
µ2 : 0 → −0.4
µ3 : 8 → 3.7

Density before updating the means (left) and after (right).

Image was taken from [DFO20] 45



M step: Updating the variances

σ2
1 : 1 → 0.14

σ2
2 : 0.2 → 0.44

σ2
3 : 3 → 1.53

Density before updating the variances (left) and after (right).

Image was taken from [DFO20] 46



M step: Updating the weights

π1 : 1
3 → 0.29

π2 : 1
3 → 0.29

π3 : 1
3 → 0.42

Density before updating the weights (left) and after (right).
Image was taken from [DFO20] 47



Density estimation example: final GMM fit

Left: After five iteration the EM algorithm has converged. Right:
Negative log-likelihood

Image was taken from [DFO20] 48



Clustering example

(a) Initialization, (b) E step, (c) M step

Image was taken from [Bis06] 49



Clustering example (2)

Results after 2, 5 and 20 iterations. After 20 iterations the algorithm is
close to convergence.

Image was taken from [Bis06] 50



GMM vs. K -means

• In order to assign points to clusters, GMM does not use a
distance measure, but applies a probability distribution around
the cluster centers

→ GMM handles outliers easier than K -means
→ GMM can analyze more complex and mixed data

• EM algorithm requires many more iterations to reach
convergence than K -means

• Each iteration of EM requires significantly more computations
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GMM vs. K -means (2)
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Initialization

K -means is ”cheap”, EM is ”expensive”

→ Run K -means to find suitable GMM initialization for EM
• Initialize the means with the means found by K -means
• Initialize the covariance matrices with the sample covariances

of the clusters found by K -means
• Initialize the weights with the fractions of data points assigned

to respective clusters
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