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Introduction



Motivation

Working with high-dimensional data (e.g. images) comes with
some difficulties:

• hard to analize
• interpretaion is difficult
• visualization is almost impossible
• computationally expensive
• needs high amount of storage
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Example: visualization

Table: Part of 53 blood and urine measurements from 65 people (33
alcoholics, 32 non-alcoholics)

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHC
A1 8.0 4.82 14.1 41 85 29 34
A2 7.3 5.02 14.7 43 86 29 34
A3 4.3 4.48 14.1 41 91 32 35
A4 7.5 4.47 14.9 45 101 33 33
A5 7.3 5.52 15.4 46 84 28 33
A6 6.9 4.86 16.0 47 97 33 34
A7 7.8 4.68 14.7 43 92 31 34
A8 8.6 4.82 15.8 42 88 33 37
A9 5.1 4.71 14.0 43 92 30 32
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Example: visualization (2)
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Example: visualization (3)

• Is there a better data presentation than ordinate axes?
• Do we need a 53-dimensional space to view the data?
• How to find the ”best” low-dimensional space that conveys

maximum useful informaiton?

5



Dimensionality reduction

High-dimensional data often comes with properties that we can
exploit:

• often overcomplete, i.e. many dimensions are redundant and
can be explaned by a combination of other dimensions

• dimensions are often correlated, so that the data possesses an
intrinsic low-dimensional structure

Dimensionality reduction exploits structure and correlation and
allows us to work with a more compact representation of the data,
ideally without loosing information!

→ Compression technique
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Managing high-dimensional data

• Database of face scans (3D geometry + texture)
• 10,000 points in each scan
• x , y , z , r , g , b - 6 numbers in each point
→ each scan is a 60,000 dimensional vector!

There is hope: faces are likely to be governed by small set of
parameters (much less than 60,000)
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PCA



Goal

Find the ”best” low-dimensional space that conveys the maximum
useful information by looking for principal components

• Which components (features) are important to keep?
• Importance (significance) = variance
• Artificial intelligence = recognizing the significance

Retaining most information after data compression is equivalent to
capturing the largest amount of variance in the low-dimensional
code.
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Covariance of data matrix

• Each sample has m features:

x = (x1, . . . , xm)

• Take N such samples, subtract the mean over features and
combine them in a n × m matrix X

• Then the covariance matrix of features C is d × d ,
positive-semidefinite and symmetric:

C = Cov(X ) = E(X⊤X ) = X⊤X
N − 1 =


σ2

11 · · · σ2
1d

... . . . ...
σ2

d1 · · · σ2
dd
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Covariance matrix
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Principal component analysis

Find an orthonormal matrix P as basis transform Y = XP, such
that

• CY becomes diagonal (remove correlation between
dimensions)

• Dimensions are ordered by importance (decreasing order of
variance)

The columns of P are the principal components p1, . . . , pd of X .
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Eigendecomposition

It can be shown that

• the principal components of data matrix X are the
eigenvectors of its covariance matrix CX

• if a matrix is symmetric, then there’s always an orthogonal
eigenbasis

→ Perform eigendecomposition of CX
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Eigendecomposition (2)
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PCA for dimensionality reduction

• Center your data by shifting data points to have zero mean
• Project data to eigenspace

• Compute covariance matrix C = Cov(Xcentered)
• Find eigenvectors and eigenvalues of C
• Sort eigenvectors according to eigenvalues

• Neglect dimensions (eigenvectors) with small eigenvalues

Eigenvectors that correspond to large eigenvalues are the directions
in which the data has strong components (=large variance)
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After dimensionality reduction

• Data compression: store only k largest eigenvectors and the
mean vector

• Pre-processing: operate on principal components as features
or project back and use as preprocessed lower-dimensional
dataset for further operations

• Clustering
• Denoising
• Training
• Etc...

• Visualization: use first 1 to 3 components to visualize your
data
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Example

Image was taken from [DFO20] 16



PCA in Applications



Approximation (compression)
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Optimality of approximation (compression)

The approximation is optimal in least squares sense

The projected points have maximal variance
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Application: tight bounding box

Bounding boxes are often served as a very simple approximation of
objects

• Fast collision detection
• Fast computation of the size of object

The tighter the bounding box the better!
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Axis-aligned bounding box

Not the optimal bounding box
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Oriented bounding box

• Compute the bounding box with respect to the axis defined by
the eigenvectors

• The origin is at the mean point
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Data Pre-processing



Pre-processing the data

• Standartization (zero mean, unit standart deviation)
• Many elements used in the objective function (e.g. RBF kernel

of SVM or L1 and L2 regularizers of linear models) may
assume that all features are centered around zero or have
variance in the same order.

• If a feature has a variance that is orders of magnitude larger
than others, it might dominate the objective function and
make the estimator unable to learn from other features
correctly as expected.

• Dimensionality reduction (PCA)
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Pre-processing the data (2)

• Perform your pre-processing transformation only on train data!
• When finished training, the transformation information (e.g.

mean, standard deviation, eigenvectors) must be carried on
together with the model to the tester

• Before testing perform the pre-processing transformation on
the test data

→ Faster convergence, better results
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