
Introduction to Neural Networks

Moritz Wolter
September 25, 2023

High-Performance Computing and Analytics Lab



Overview

Neural networks

Classification with neural networks

Network coding

1



Neural networks



The wonders of the human visual system

Figure: Most humans effortlessly recognize the digits 5 0 4 1 9 2 1 3.

2



Biological motivation

Image source: en.wikipedia.org 3



The perceptron

Can computers recognize digits? Mimic biological neurons,

inputs

x1

x2

x3

...

xn

weighting

w1 · x1 = h̄1

w2 · x2 = h̄2

w3 · x3 = h̄3

...

wn · xn = h̄n

activation

f (∑n
i=1 h̄i + b)

+

+

+

+

Output

h

Formally a single perceptron is defined as

f (wT x + b) = h (1)

with w ∈ Rn, x ∈ Rn and h, b ∈ R. 4



The activation function f

Two popular choices for the activation function f .

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Sigmoid σ(x)

−10 −5 0 5 10
0

2

4

6

8

10

ReLU(x)

5



Arrays of perceptrons

Let’s extend the definition to cover an array of perceptrons:

input

x1

x2

x3

...

xn

weighting

wT
1 x + b1 = h̄1

wT
2 x + b2 = h̄2

wT
3 x + b3 = h̄3

...

wT
mx + bm = h̄m

activation

f (h̄1)

f (h̄2)

f (h̄3)

...

f (h̄n)

output

h

Every input is connected to every neuron. In matrix language, this
turns into

h̄ = Wx + b, h = f (h̄). (2)

With W ∈ Rm,n, x ∈ Rn, b ∈ Rm, and h, h̄ ∈ Rm. 6



The loss function

To choose weights for the network, we require a quality measure.
We already saw the squared error cost function,

Cse = 1
2

n∑
k=1

(yk − hk)2 = 1
2(y − h)T (y − h) (3)

This function measures the squared distance from each desired
output. y denotes the desired labels, and h represents network
output.

7



The gradient of the mse-cost-function

Both the squared error loss function and our dense layer are
differentiable.

∂Cse
∂h = h − y = △se (4)

The △ symbol will re-appear. It always indicates incoming
gradient information from above. If the labels are a vector of shape
Rm, △ and the network output h must share this dimension.

8



The gradient of a dense layer

The chain rule tells us the gradients for the dense layer [Nie15]

δW = [f ′(h̄) ⊙ △]xT , δb = f ′(h̄) ⊙ △, (5)
δx = WT [f ′(h̄) ⊙ △], (6)

where ⊙ is the element-wise product. δ denotes the cost function
gradient for the value following it [Gre+16].
With δW ∈ Rm,n, δx ∈ Rn and δb ∈ Rm. Modern libraries will
take care of these computations for you!

9



Derivatives of our activation functions

σ′(x) = σ(x) · (1 − σ(x)) (7)
ReLU′(x) = H(x) (8)

−10 −5 0 5 10
0

5 · 10−2

0.1

0.15

0.2

0.25

σ′(x)

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

ReLU′(x)

10



Perceptrons for functions

The network components described this far already allow function
learning. Given a noisy input signal x ∈ Rm and a ground through
output y ∈ Rm, define,

h1 = σ(Wx + b) (9)
o = Wprojh1 (10)

With W ∈ Rm,n, x ∈ Rn and b ∈ Rm. m and n denote the number
of neurons and the input signal length. For signal denoising, input
and output have the same length. Therefore Wproj ∈ Rn,m. o ∈ Rn

denotes the network output.

11



Denoising a cosine

Training works by iteratively descending along the gradients. For
W the weights at the next time step τ are given by,

Wτ+1 = Wτ − ϵ · δWτ . (11)

The step size is given by ϵ ∈ R. At τ = 0, matrix entries are
random. U [−0.1, 0.1] is a reasonable choice here. The process is
the same for all other network components.

12



Denoising a cosine

Optimization for 500 steps with 10 neurons, leads to the output
below:

−10 −5 0 5 10

−1

−0.5

0

0.5

1 cos(x)
noisy signal
network output

Figure: The cosine function is shown in blue, a noisy network input in
orange, and a denoised network output in green.

13



Summary

• Artificial neural networks are biologically motivated.
• Gradients make it possible to optimize arrays of neurons.
• A single array of layers of neurons can solve tasks like

denoising a sine.

14



Classification with neural networks



Deep multi-layer networks

Stack dense layers and activations to create deep networks.

input

x W1x + b1 = h̄1 f1(h̄1) = h1

Dense 1 Activation function 1

W2h1 + b2 = h̄2 f2(h̄2) = h2

Dense 2 Activation function 2

W3h2 + b3 = h̄3 f3(h̄3) = h3

Dense 3 Activation function 3

1
n

∑(y − h3)2

Cost

15



Backpropagation

input

x W1x + b1 = h̄1 f1(h̄1) = h1

Dense 1 Activation function 1

W2h1 + b2 = h̄2 f2(h̄2) = h2

Dense 2 Activation function 2

W3h2 + b3 = h̄3 f3(h̄3) = h3

Dense 3 Activation function 3

1
n

∑n
i=0(yi − h3,i)2

Cost

△δh̄3 = f ′(h̄3) ⊙ △δh2 = WT
3 δh̄3δh̄2 = f ′(h̄2) ⊙ δh2δh1 = WT

2 δh̄2δh̄1 = f ′(h̄1) ⊙ δh1

δW3 = δh̄3hT
2 δb3 = δh̄3δW2 = δh̄2hT

1 δb2 = δh̄2δW1 = δh̄1xT δb1 = δh̄1

16



The cross-entropy loss

The cross-entropy loss function is defined as [Nie15; Bis06]

Cce(y, o) = −
no∑
k

[(yk ln ok) + (1 − yk) ln(1 − ok)]. (12)

With no the number of output neurons. y ∈ Rno the desired
output and o ∈ Rno the network output.

17



Understanding how cross-entropy works

To understand cross entropy let’s consider the boundary cases
y = 0 and y = 1.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

network output

co
st

Cross entropy for label equal 0

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

network output

co
st

Cross entropy for label equal 1

18



Gradients and cross-entropy

If a sigmoidal activation function produced o the gradients can be
computed using [Nie15; Bis06]

∂Cce
∂h = σ(o) − y = △ce (13)

19



The MNIST-Dataset

Figure: The MNIST-dataset contains 70k images of handwritten digits.

20



Validation and Test data splits

• To ensure the correct operation of the systems we devise, it is
paramount to hold back part of the data for validation and
testing.

• Before starting to train, split off validation and test data.
• The 70k MNIST samples could, for example, be partitioned

into 59k training images. 1k validation images and 10k test
images.

21



Input-preprocessing

Standard initializations and learning algorithms assume an
approximately standard normal distribution of the network inputs.
Consequently, we must rescale the data using,

xij = xij − µ

σ
(14)

With µ and σ the training set mean and standard deviation. For all
pixels, i , j up the height and width of every image. b denotes the
number of data points, and n is the data dimension.

22



The effect of normalization

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
input data
normalized data

23



Whitening the inputs [23]

Instead of dividing by the standard deviation, rescale the centered
data with the singular values of the covariance matrix.

C = 1
n (x − µ)T (x − µ) (15)

With n as the total number of data points. Next we find
UΣV = C. After projecting the data via p = xU. Whitening now
uses the singular values of C to rescale the data,

pij = pij√
σj + ϵ

(16)

With ϵ i.e. equal to 1e−8 for numerical stability. The operation is
repeated for all pixel locations i , j in the input image.

24



The effect of Whitening

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
input data
normalized data
whitened data

Whitening is expensive and sometimes unstable. Consequently,
most projects rely on normalization.

25



Label-encoding

It has proven useful to have individual output neurons produce
probabilities for each class. Given integer labels 1, 2, 3, 4, · · · ∈ Z.
One-hot encoded label vectors have a one at the label’s position
and zeros elsewhere. I.e.

1
0
0
0
...


,



0
1
0
0
...


,



0
0
1
0
...


,



0
0
0
1
...


, . . . (17)

for the integer label sequence above.

26



Batching the data

Working with individual data points is not efficient in practice.
Instead, we would like to process multiple (i.e. 64) samples in
parallel. Add a leading batch dimension and rely on broadcasting.

An additional mean converts the cost of a batch into a scalar. In
the cross-entropy case:

Cce(y, o) = − 1
nb

nb∑
i=1

no∑
k=1

[(yi ,k ln oi ,k) + (1 − yi ,k) ln(1 − oi ,k)]

(18)

With no the number of output neurons and nb the batch size.

27



MNIST-Classification

Training a three-layer dense network on mnist for five runs leads to:

2 4 6 8 10

0.84

0.86

0.88

0.9

0.92

0.94

Epochs

Ac
cu

ra
cy

train acc
val acc
test acc

28



Conclusion

• Preprocessing followed by forward passes, backward passes,
and testing from the classic training pipeline.

• Using the pipeline, artificial neural networks enable computers
to make sense of images.

• The optimization result depends on the initialization.
• The initialization depends on the seed of the pseudorandom

number generator.
• Seed-values must be recorded, to allow reproduction.
• Share the results of multiple re-initialized runs, if possible.

29



Literature i

References

[Bis06] Christopher M Bishop. Pattern recognition and
machine learning. springer, 2006.

[23] Data-preprocessing.
https://cs231n.github.io/neural-networks-2/.
Accessed: 2023-03-26. 2023.

30

https://cs231n.github.io/neural-networks-2/


Literature ii

[Gre+16] Klaus Greff, Rupesh K Srivastava, Jan Koutnik,
Bas R Steunebrink, and Jürgen Schmidhuber. “LSTM:
A search space odyssey.” In: IEEE transactions on
neural networks and learning systems 28.10 (2016),
pp. 2222–2232.

[Nie15] Michael A Nielsen. Neural networks and deep learning.
Vol. 25. Determination press San Francisco, CA, USA,
2015.

31



Network coding



Networks in Flax

Code examples for added implementation fun!! A minimal net:
import jax.numpy as jnp
from flax import linen as nn

class Net(nn.Module):
@nn.compact

def call (self, x):
x = jnp.reshape(x,

[x.shape[0], −1])
x = nn.Dense(10)(x)

x = nn.sigmoid(x)

return x

Add more layers in our own experiments!!
32



Network initialization

Initialization requires a key for the pseudorandom number
generator.

key = jax.random.PRNGKey(key)

net = Net()

variables = net.init(

key, jnp.ones([batch size]

+ list(img data train.shape[1:])
+ [1])

)

33



A forward pass

A forward pass through the net requires the weights and an input
array.

output = net.apply(
variables ,

jnp.expand dims(img batch , −1)
)

34



Gradient steps on weight trees

weights = jax.tree util.tree map(

update fun ,

weights, grads

)

It’s useful to use a lambda function here. The function should
have two arguments weights and grads and return weights -
learning rate * grads.
More information on lambda functions:
https://docs.python.org/3/tutorial/controlflow.html#
lambda-expressions .
More information on the tree maps:
https://jax.readthedocs.io/en/latest/_autosummary/
jax.tree_util.tree_map.html

35

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://jax.readthedocs.io/en/latest/_autosummary/jax.tree_util.tree_map.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.tree_util.tree_map.html

	Neural networks
	Classification with neural networks
	References
	Network coding

