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Neural networks



The wonders of the human visual system

Figure: Most humans effortlessly recognize the digits 5 0 4 1 9 2 1 3.
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Biological motivation

Image source: en.wikipedia.org 3



The perceptron

Can computers recognize digits? Mimic biological neurons,

inputs

x1

x2

x3

...

xn

weighting

w1 · x1 = h̄1

w2 · x2 = h̄2

w3 · x3 = h̄3

...

wn · xn = h̄n

activation

f (∑n
i=1 h̄i + b)

+

+

+

+

Output

h

Formally a single perceptron is defined as

f (wT x + b) = h (1)

with w ∈ Rn, x ∈ Rn and h, b ∈ R. 4



The activation function f

Two popular choices for the activation function f .
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Arrays of perceptrons

Let’s extend the definition to cover an array of perceptrons:

input

x1

x2

x3

...

xn

weighting

wT
1 x + b1 = h̄1

wT
2 x + b2 = h̄2

wT
3 x + b3 = h̄3

...

wT
mx + bm = h̄m

activation

f (h̄1)

f (h̄2)

f (h̄3)

...

f (h̄n)

output

h

Every input is connected to every neuron. In matrix language, this
turns into

h̄ = Wx + b, h = f (h̄). (2)

With W ∈ Rm,n, x ∈ Rn, b ∈ Rm, and h, h̄ ∈ Rm. 6



The loss function

To choose weights for the network, we require a quality measure.
We already saw the squared error cost function,

Cse = 1
2

n∑
k=1

(yk − hk)2 = 1
2(y − h)T (y − h) (3)

This function measures the squared distance from each desired
output. y denotes the desired labels, and h represents network
output.
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The gradient of the mse-cost-function

Both the squared error loss function and our dense layer are
differentiable.

∂Cse
∂h = h − y = △se (4)

The △ symbol will re-appear. It always indicates incoming
gradient information from above. If the labels are a vector of shape
Rm, △ and the network output h must share this dimension.
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The gradient of a dense layer

The chain rule tells us the gradients for the dense layer [Nie15]

δW = [f ′(h̄) ⊙ △]xT , δb = f ′(h̄) ⊙ △, (5)
δx = WT [f ′(h̄) ⊙ △], (6)

where ⊙ is the element-wise product. δ denotes the cost function
gradient for the value following it [Gre+16].
With δW ∈ Rm,n, δx ∈ Rn and δb ∈ Rm. Modern libraries will
take care of these computations for you!
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Derivatives of our activation functions

σ′(x) = σ(x) · (1 − σ(x)) (7)
ReLU′(x) = H(x) (8)
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Perceptrons for functions

The network components described this far already allow function
learning. Given a noisy input signal x ∈ Rm and a ground through
output y ∈ Rm, define,

h1 = σ(Wx + b) (9)
o = Wprojh1 (10)

With W ∈ Rm,n, x ∈ Rn and b ∈ Rm. m and n denote the number
of neurons and the input signal length. For signal denoising, input
and output have the same length. Therefore Wproj ∈ Rn,m. o ∈ Rn

denotes the network output.

11



Denoising a cosine

Training works by iteratively descending along the gradients. For
W the weights at the next time step τ are given by,

Wτ+1 = Wτ − ϵ · δWτ . (11)

The step size is given by ϵ ∈ R. At τ = 0, matrix entries are
random. U [−0.1, 0.1] is a reasonable choice here. The process is
the same for all other network components.
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Denoising a cosine

Optimization for 500 steps with 10 neurons, leads to the output
below:
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Figure: The cosine function is shown in blue, a noisy network input in
orange, and a denoised network output in green.
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Summary

• Artificial neural networks are biologically motivated.
• Gradients make it possible to optimize arrays of neurons.
• A single array of layers of neurons can solve tasks like

denoising a sine.
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Classification with neural networks



Deep multi-layer networks

Stack dense layers and activations to create deep networks.

input

x W1x + b1 = h̄1 f1(h̄1) = h1

Dense 1 Activation function 1

W2h1 + b2 = h̄2 f2(h̄2) = h2

Dense 2 Activation function 2

W3h2 + b3 = h̄3 f3(h̄3) = h3

Dense 3 Activation function 3

1
n

∑(y − h3)2

Cost
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Backpropagation

input

x W1x + b1 = h̄1 f1(h̄1) = h1

Dense 1 Activation function 1

W2h1 + b2 = h̄2 f2(h̄2) = h2

Dense 2 Activation function 2

W3h2 + b3 = h̄3 f3(h̄3) = h3

Dense 3 Activation function 3

1
n

∑n
i=0(yi − h3,i)2

Cost

△δh̄3 = f ′(h̄3) ⊙ △δh2 = WT
3 δh̄3δh̄2 = f ′(h̄2) ⊙ δh2δh1 = WT

2 δh̄2δh̄1 = f ′(h̄1) ⊙ δh1

δW3 = δh̄3hT
2 δb3 = δh̄3δW2 = δh̄2hT

1 δb2 = δh̄2δW1 = δh̄1xT δb1 = δh̄1
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The cross-entropy loss

The cross-entropy loss function is defined as [Nie15; Bis06]

Cce(y, o) = −
no∑
k

[(yk ln ok) + (1 − yk) ln(1 − ok)]. (12)

With no the number of output neurons. y ∈ Rno the desired
output and o ∈ Rno the network output.
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Understanding how cross-entropy works

To understand cross entropy let’s consider the boundary cases
y = 0 and y = 1.
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Gradients and cross-entropy

If a sigmoidal activation function produced o the gradients can be
computed using [Nie15; Bis06]

∂Cce
∂h = σ(o) − y = △ce (13)
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The MNIST-Dataset

Figure: The MNIST-dataset contains 70k images of handwritten digits.
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Validation and Test data splits

• To ensure the correct operation of the systems we devise, it is
paramount to hold back part of the data for validation and
testing.

• Before starting to train, split off validation and test data.
• The 70k MNIST samples could, for example, be partitioned

into 59k training images. 1k validation images and 10k test
images.
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Input-preprocessing

Standard initializations and learning algorithms assume an
approximately standard normal distribution of the network inputs.
Consequently, we must rescale the data using,

xij = xij − µ

σ
(14)

With µ and σ the training set mean and standard deviation. For all
pixels, i , j up the height and width of every image. b denotes the
number of data points, and n is the data dimension.
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The effect of normalization

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
input data
normalized data

23



Whitening the inputs [23]

Instead of dividing by the standard deviation, rescale the centered
data with the singular values of the covariance matrix.

C = 1
n (x − µ)T (x − µ) (15)

With n as the total number of data points. Next we find
UΣV = C. After projecting the data via p = xU. Whitening now
uses the singular values of C to rescale the data,

pij = pij√
σj + ϵ

(16)

With ϵ i.e. equal to 1e−8 for numerical stability. The operation is
repeated for all pixel locations i , j in the input image.

24



The effect of Whitening
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Whitening is expensive and sometimes unstable. Consequently,
most projects rely on normalization.
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Label-encoding

It has proven useful to have individual output neurons produce
probabilities for each class. Given integer labels 1, 2, 3, 4, · · · ∈ Z.
One-hot encoded label vectors have a one at the label’s position
and zeros elsewhere. I.e.

1
0
0
0
...


,



0
1
0
0
...


,



0
0
1
0
...


,



0
0
0
1
...


, . . . (17)

for the integer label sequence above.
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Batching the data

Working with individual data points is not efficient in practice.
Instead, we would like to process multiple (i.e. 64) samples in
parallel. Add a leading batch dimension and rely on broadcasting.

An additional mean converts the cost of a batch into a scalar. In
the cross-entropy case:

Cce(y, o) = − 1
nb

nb∑
i=1

no∑
k=1

[(yi ,k ln oi ,k) + (1 − yi ,k) ln(1 − oi ,k)]

(18)

With no the number of output neurons and nb the batch size.
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MNIST-Classification

Training a three-layer dense network on mnist for five runs leads to:
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Conclusion

• Preprocessing followed by forward passes, backward passes,
and testing from the classic training pipeline.

• Using the pipeline, artificial neural networks enable computers
to make sense of images.

• The optimization result depends on the initialization.
• The initialization depends on the seed of the pseudorandom

number generator.
• Seed-values must be recorded, to allow reproduction.
• Share the results of multiple re-initialized runs, if possible.
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Network coding



Networks in Flax

Code examples for added implementation fun!! A minimal net:
import jax.numpy as jnp
from flax import linen as nn

class Net(nn.Module):
@nn.compact

def call (self, x):
x = jnp.reshape(x,

[x.shape[0], −1])
x = nn.Dense(10)(x)

x = nn.sigmoid(x)

return x

Add more layers in our own experiments!!
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Network initialization

Initialization requires a key for the pseudorandom number
generator.

key = jax.random.PRNGKey(key)

net = Net()

variables = net.init(

key, jnp.ones([batch size]

+ list(img data train.shape[1:])
+ [1])

)
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A forward pass

A forward pass through the net requires the weights and an input
array.

output = net.apply(
variables ,

jnp.expand dims(img batch , −1)
)
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Gradient steps on weight trees

weights = jax.tree util.tree map(

update fun ,

weights, grads

)

It’s useful to use a lambda function here. The function should
have two arguments weights and grads and return weights -
learning rate * grads.
More information on lambda functions:
https://docs.python.org/3/tutorial/controlflow.html#
lambda-expressions .
More information on the tree maps:
https://jax.readthedocs.io/en/latest/_autosummary/
jax.tree_util.tree_map.html
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