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Motivation [GBC16]

• sparse interactions
• parameter sharing
• equivariant representations (i.e. with respect to translation)
• efficiency
• Train deeper networks.
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The invention of convolutional neural networks

Proposed in Yann le Cun’s [LeC+89].
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The convolution operation in
machine learning



Defining convolution

For two one-dimensional signals x ∈ RT and k ∈ RT , convolution
is defined as

s(t) = (x ∗ k)(t) =
T∑

a=0
x(a)k(t − a), (1)

for numbers t, a. Possible t will depend on signal length and
padding.
In 2D, we require a kernel matrix K ∈ RO,P and a image matrix
I ∈ KN,M

S(i , j) = (K ∗ I)(i , j) =
M∑
m

N∑
n

I(i − m, j − n)K (n, m) (2)

Again not just any, i , j will do. We will see what this means in a
minute.
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Defining cross-correlation

S(i , j) = (K ∗ I) =
M∑
m

N∑
n

I(i + m, j + n)K (m, n) (3)

Cross-correlation is convolution without flipping the kernel
[GBC16]. Many machine learning libraries implement
cross-correlation and call it convolution. In this course we will
follow their example.
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Illustrating the convolution operation

Figure: Illustration of the convolution operation without padding and
unit strides [DV16].
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Strided convolution

Figure: Visualization of stride two convolutions without padding [DV16].
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Padded convolution

Figure: Visualization of fully padded convolutions with unit strides
[DV16].
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Summary

• The convolution operation slides convolution kernels over an
image.

• Padding avoids losing pixels on the side.
• Strided convolutions downsample the input.
• Moving in steps of two pixels, for example, cuts the resolution

in half.
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Understanding convolution



Getting computers to find Waldo
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Finding Waldo via cross-correlation.
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Summary

• Cross-correlation is called convolution in the machine learning
literature.

• Patterns can be located in signals via cross-correlation.
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Convolutional neural networks



Motivating convolutional neural networks (CNN)

• Fixed filters work if we are looking for a very specific waldo.
• In other cases, we need a better solution.
• Convolutional neural networks rely on filter optimization via

back-propagation.
• Filter optimization turns CNNs into very versatile tools!
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Multichannel convolution
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Figure: The plot shows a convolution computation using a 3x2x3x3
kernel on a 2x5x5 input. The kernel pairs convolve with the input,
producing 3x3 results. + adds the two channels for each of the three
tensors. Finally, everything is stacked. Inspired by [DV16, page 9]. 14



Computing the output shape of a CNN layer

One can determine the output shape for each dimension
individually. Without zero padding and a stride size of one

o = (i − k) + 1, (4)

can be used to compute the output size. i denotes the input size,
and k is the kernel size. [DV16] covers all cases which appear in
practice.
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Image to column and the forward pass

We already know how to train dense network layers using matrix
multiplication. Training a CNN the same way requires restructuring
the image to express convolution as matrix multiplication,

h = Kf vI + b, (5)
hf = f (h). (6)

vI ∈ R denotes the restructured image input. Kf ∈ Rko ,ki ·kh·kw the
flattened restructured kernel. o, i , h, w denote the output, input,
height, and width dimensions, respectively.
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The backward pass

We apply the rules for dense layers to the restructured
convolutional layer data,

δKf = [f ′(h) ⊙ △]f vT
I , δb = f ′(h) ⊙ △, (7)

δx =
(
KT

f [f ′(h) ⊙ △]f
)

I−1 . (8)

With I and I−1 denoting the im2col and col2im operations. All
major deep learning frameworks have both operations built in.
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The classifier at the end

input image
layer l = 0

convolutional layer
with non-linearities

layer l = 1

subsampling layer
layer l = 3

convolutional layer
with non-linearities

layer l = 4

subsampling layer
layer l = 6

fully connected layer
layer l = 7

fully connected layer
output layer l = 8

Figure: The LeNet-architecture[LeC+89] as illustrated by [Stu20].
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The shifting input problem

• With the tools we have seen, shifting an input also shifts the
CNN output before the dense classifier.

• Shifting the input would shift the input in front of the final
dense-classifier neurons.

• We want invariance to translation.
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Pooling

Max pooling layers choose maximum values in predefined regions.
Two by two max pooling, for example, picks the maximum in
neighboring areas of four pixels. If an input is shifted by two pixels,
the result will remain the same! Pooling layers are used repeatedly
for a cumulative effect.
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MNIST

Figure: Sample digits from the MNIST-database.
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Figure: Mean convergence of two-layer CNN with a dense classifier.
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Deep convolutional neural networks

Figure: Comparing deep networks with and without convolutional
structures on the Google-Street view dataset [GBC16, page 199].
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Network coding



How to batch data

sample no = data train.shape[0]

img batches = np.split(

data train ,

sample no // batch size ,

axis=0

)

label batches = np.split(

lbl data train ,

sample no // batch size ,

axis=0

)

In the listing above // denotes integer- or floor-division in python.
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Forward pass and Gradients

def forward pass(
weights: FrozenDict ,

img batch: jnp.ndarray,

label batch: jnp.ndarray

) −> jnp.ndarray:
out = net.apply(weights,

jnp.expand dims(img batch ,

−1))
ce loss = cross entropy(

label batch ,

net out)

return ce loss

Encode labels via nn.one hot. Use jax.value and grad to
obtain a function which allows gradient computations. 26



Tree-Map and gradient descent

To understand what the optimizers implemented in optax are
doing. It’s useful to use a lambda function here.

update fun = \
lambda w, g: w − lr ∗ g

weights = jax.tree util.tree map(

update fun ,

weights, grads

)

More information on lambda functions:
https://docs.python.org/3/tutorial/controlflow.html#
lambda-expressions .
More information on the tree maps:
https://jax.readthedocs.io/en/latest/_autosummary/
jax.tree_util.tree_map.html
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