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Motivation

• Neural network optimization is non-convex. We aren’t
guaranteed to find a global optimum.

• The outcome depends on the starting point and the optimizer.
• Consequently, one should choose the best possible starting

point and think about how to best traverse the optimization
landscape.

• Both initialization and optimization are hot research topics.
• As you will see, the science is by no means settled.
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Initialization



Glorot-Initialization

For a layer with m input dimensions and n output dimensions. A
very common initialization was suggested by Glorot [GB10],

wij ∼ U

−
√

6
m + n ,

√
6

m + n

 . (1)

For all possible position indices i , j . U denotes a Uniform
distribution. ML-Frameworks generally implement pseudo-random
versions of all major distributions.
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He-Initialization

He-uniform-initialization [He+15] is the default for Linear-Layers in
Pytorch.

wij ∼ U
(

− 1√
m ,

1√
m

)
, (2)

this heuristic is also recommended in [GBC16].
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LeCun-Normal-Initialization

For linear layers, Jax and Flax work with truncated normal
distributions,

wij ∼ N

0,

√
1
n

 (3)

by default. N (µ, σ) denotes the standard normal distribution with
mean µ and standard deviation σ. Outliers are redrawn if they are
larger than 2σ.

It is generally ok to stick to the default set by your favorite
framework.
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Summary

• We saw three different ways to initialize neural networks.
• Initialization is an active research matter.
• It is usually a good idea to stick to your framework’s default.
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Network optimization



Gradient Descent

Following the literature [GBC16, chapter 8], the vector θ will
denote all learnable network parameters. This simplification makes
it easier to write the general ideas down. Gradient descent now
looks like this,

gτ = 1
m∇θ

m∑
i=1

C(f (xi ; θ), yi), (4)

θτ+1 = θτ − ϵgτ . (5)

With the step counter τ , gradient operator ∇, cost function C ,
inputs x, and outputs y. It is efficient to process multiple batches
at once. m denotes the batch size and ϵ the step size.
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Learning rate decay

[GBC16, chapter 8] recommends linear decay until step τ

ϵk = (1 − α)ϵ0 + αϵτ (6)

with α = k
τ . After step τ the step size typically remains the same.
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An example would be i.e. ϵ0 = 0.01, ϵτ = 0.001 and τ = 500. 8



Momentum

Momentum helps the optimizer to traverse through locally minimal
valleys, the formulation turns into,

gτ = 1
m∇θ

m∑
i=0

C(f (xi ; θ), yi), (7)

vτ = αvτ−1 − ϵgτ , (8)
θτ+1 = θτ − vτ . (9)

A new velocity term v appeared. Use v−1 = 0.
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The effect of momentum

Figure: Illustration of the gradient steps taken by an optimizer with
momentum. Image taken from [GBC16].
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An adaptive learning rate: RMSprop

The RMSprop method works especially well when recurrent
connections are present. It uses the update steps,

gτ = 1
m∇θ

m∑
i=0

C(f (xi ; θ), yi), (10)

rτ = rτ−1 + gτ ⊙ gτ , (11)

θτ+1 = θτ − ϵ

δ + rτ
⊙ g. (12)

The key novelty here is to scale the learning rate ϵ adaptively for
every step. δ is a small number used to avoid division by zero.
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The default: Adam

Adam (adaptive moments) introduces an additional scaling term,

gτ = 1
m∇θ

m∑
i=0

C(f (xi ; θ), yi), (13)

sτ = ρ1sτ−1 + (1 − ρ1)gτ (14)
rτ = ρ2rτ−1 + (1 − ρ2)gτ ⊙ gτ (15)

ŝτ = sτ

1 − ρ1
(16)

r̂τ = rτ

1 − ρ2
(17)

θτ+1 = θτ − ϵŝτ

δ + r̂ τ
⊙ g. (18)

Adam combines the Rmsprop-idea with momentum. Major deep
learning frameworks implement adam for you. Use optax.adam in
today’s exercise.
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Summary

We saw the three optimizers that usually appear in the literature.

• Carefully tuned gradient descent with momentum can deliver
excellent performance.

• RMSprop adds stability. Especially for hard problems, for
example with recurrent connections.

• Adam often runs reliably for a wide range of problems.
• The best optimizers don’t help us if we are overfitting.

Generally speaking, the question of the ideal optimizer choice is
unsettled [GBC16].
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Overfitting



Overfitting and early stopping

Figure: Overfitting of a CNN on the MNIST data set. Figure from
[GBC16].
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Extending the data-set

Collecting more data is the most elegant way to prevent overfitting.
If collecting more data is impossible artificial extensions can help.

• Input-noise
• Input transforms

Consider, for example, an image:
• random crops,
• random left-right flips,
• or small random rotations,

are ways to avoid looking at an identical image again.
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Regularization



Motivation

• Guard against overfitting.
• Improve generalization.
• Instead of regularization or additionally, it is also sometimes a

good idea to reduce the number of weights.
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L2-Norm Regularization

The idea here is to encourage sparsity in the weights by adding,

Cw (θ) = λr

w∑
i=1

|Wi |2 (19)

To the cost function. w denotes the total number of weight
objects in the network. The scaling factor λr ∈ R must chosen by
hand. This is Thikonov-regularization, the machine learning way.
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Dropout

Figure: Dropout as described in [Sri+14].

Idea: Randomly remove connections during training.
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Batch-Norm

Idea: Normalize before every layer and optimize a scale and shift
separately [IS15]:

x̂ (l)
ij =

x (l)
ij − µ

(l)
x

σ
(l)
x

(20)

x̃ (l)
ij = γx̂ (l)

ij + β(l) (21)

Where x(l) denotes the input at layer l , while µ
(l)
x and σ

(l)
x are the

batch mean and standard deviation. γ(l) and β(l) must be learned
for each layer. For every feature position i , j up to the feature
height and width.
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Summary

• Regularization is sometimes required.
• Before spending a lot of time on regularization reduce the

model size.
• Look for models for your problem in the literature.
• Most of the time a regularizer is already built in.
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Conclusion

• We saw the most important initialization methods,
• the most important optimizers,
• and some regularization.
• Let’s talk about Unets!
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Code snippets



Using Optax-Optimizers

All common optimizers are available in the Optax library:
https://optax.readthedocs.io/en/latest/
Look for Adam in the documentation!
# c r e a t i n g an o p t i m i z e r
opt = optax.adam(learning rate=0.001)

# i n i t i a l i z i n g an o p t i m i z e r
opt state = opt.init(weights)

# c o m u t i n g an u p d a t e .
updates, opt state = opt.update(

grads, opt state , weights)

# a p l l y i n g a w e i g h t u p d a t e .
weights = optax.apply updates(

weights, updates)
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