
Initialization, Optimization, and Regularization

Moritz Wolter
September 27, 2023

High-Performance Computing and Analytics Lab, University of Bonn

Overview

Initialization

Network optimization

Overfitting

Regularization

Code snippets

1

Motivation

• Neural network optimization is non-convex. We aren’t
guaranteed to find a global optimum.

• The outcome depends on the starting point and the optimizer.
• Consequently, one should choose the best possible starting

point and think about how to best traverse the optimization
landscape.

• Both initialization and optimization are hot research topics.
• As you will see, the science is by no means settled.

2

Initialization

Glorot-Initialization

For a layer with m input dimensions and n output dimensions. A
very common initialization was suggested by Glorot [GB10],

wij ∼ U

−
√

6
m + n ,

√
6

m + n

 . (1)

For all possible position indices i , j . U denotes a Uniform
distribution. ML-Frameworks generally implement pseudo-random
versions of all major distributions.

3

He-Initialization

He-uniform-initialization [He+15] is the default for Linear-Layers in
Pytorch.

wij ∼ U
(

− 1√
m ,

1√
m

)
, (2)

this heuristic is also recommended in [GBC16].

4

LeCun-Normal-Initialization

For linear layers, Jax and Flax work with truncated normal
distributions,

wij ∼ N

0,

√
1
n

 (3)

by default. N (µ, σ) denotes the standard normal distribution with
mean µ and standard deviation σ. Outliers are redrawn if they are
larger than 2σ.

It is generally ok to stick to the default set by your favorite
framework.

5

Summary

• We saw three different ways to initialize neural networks.
• Initialization is an active research matter.
• It is usually a good idea to stick to your framework’s default.

6

Network optimization

Gradient Descent

Following the literature [GBC16, chapter 8], the vector θ will
denote all learnable network parameters. This simplification makes
it easier to write the general ideas down. Gradient descent now
looks like this,

gτ = 1
m∇θ

m∑
i=1

C(f (xi ; θ), yi), (4)

θτ+1 = θτ − ϵgτ . (5)

With the step counter τ , gradient operator ∇, cost function C ,
inputs x, and outputs y. It is efficient to process multiple batches
at once. m denotes the batch size and ϵ the step size.

7

Learning rate decay

[GBC16, chapter 8] recommends linear decay until step τ

ϵk = (1 − α)ϵ0 + αϵτ (6)

with α = k
τ . After step τ the step size typically remains the same.

0 200 400 600 800 1,000

0.2

0.4

0.6

0.8

1
·10−2

steps

ϵ
linear decay

An example would be i.e. ϵ0 = 0.01, ϵτ = 0.001 and τ = 500. 8

Momentum

Momentum helps the optimizer to traverse through locally minimal
valleys, the formulation turns into,

gτ = 1
m∇θ

m∑
i=0

C(f (xi ; θ), yi), (7)

vτ = αvτ−1 − ϵgτ , (8)
θτ+1 = θτ − vτ . (9)

A new velocity term v appeared. Use v−1 = 0.

9

The effect of momentum

Figure: Illustration of the gradient steps taken by an optimizer with
momentum. Image taken from [GBC16].

10

An adaptive learning rate: RMSprop

The RMSprop method works especially well when recurrent
connections are present. It uses the update steps,

gτ = 1
m∇θ

m∑
i=0

C(f (xi ; θ), yi), (10)

rτ = rτ−1 + gτ ⊙ gτ , (11)

θτ+1 = θτ − ϵ

δ + rτ
⊙ g. (12)

The key novelty here is to scale the learning rate ϵ adaptively for
every step. δ is a small number used to avoid division by zero.

11

The default: Adam

Adam (adaptive moments) introduces an additional scaling term,

gτ = 1
m∇θ

m∑
i=0

C(f (xi ; θ), yi), (13)

sτ = ρ1sτ−1 + (1 − ρ1)gτ (14)
rτ = ρ2rτ−1 + (1 − ρ2)gτ ⊙ gτ (15)

ŝτ = sτ

1 − ρ1
(16)

r̂τ = rτ

1 − ρ2
(17)

θτ+1 = θτ − ϵŝτ

δ + r̂ τ
⊙ g. (18)

Adam combines the Rmsprop-idea with momentum. Major deep
learning frameworks implement adam for you. Use optax.adam in
today’s exercise.

12

Summary

We saw the three optimizers that usually appear in the literature.

• Carefully tuned gradient descent with momentum can deliver
excellent performance.

• RMSprop adds stability. Especially for hard problems, for
example with recurrent connections.

• Adam often runs reliably for a wide range of problems.
• The best optimizers don’t help us if we are overfitting.

Generally speaking, the question of the ideal optimizer choice is
unsettled [GBC16].

13

Overfitting

Overfitting and early stopping

Figure: Overfitting of a CNN on the MNIST data set. Figure from
[GBC16].

14

Extending the data-set

Collecting more data is the most elegant way to prevent overfitting.
If collecting more data is impossible artificial extensions can help.

• Input-noise
• Input transforms

Consider, for example, an image:
• random crops,
• random left-right flips,
• or small random rotations,

are ways to avoid looking at an identical image again.

15

Regularization

Motivation

• Guard against overfitting.
• Improve generalization.
• Instead of regularization or additionally, it is also sometimes a

good idea to reduce the number of weights.

16

L2-Norm Regularization

The idea here is to encourage sparsity in the weights by adding,

Cw (θ) = λr

w∑
i=1

|Wi |2 (19)

To the cost function. w denotes the total number of weight
objects in the network. The scaling factor λr ∈ R must chosen by
hand. This is Thikonov-regularization, the machine learning way.

17

Dropout

Figure: Dropout as described in [Sri+14].

Idea: Randomly remove connections during training.

18

Batch-Norm

Idea: Normalize before every layer and optimize a scale and shift
separately [IS15]:

x̂ (l)
ij =

x (l)
ij − µ

(l)
x

σ
(l)
x

(20)

x̃ (l)
ij = γx̂ (l)

ij + β(l) (21)

Where x(l) denotes the input at layer l , while µ
(l)
x and σ

(l)
x are the

batch mean and standard deviation. γ(l) and β(l) must be learned
for each layer. For every feature position i , j up to the feature
height and width.

19

Summary

• Regularization is sometimes required.
• Before spending a lot of time on regularization reduce the

model size.
• Look for models for your problem in the literature.
• Most of the time a regularizer is already built in.

20

Conclusion

• We saw the most important initialization methods,
• the most important optimizers,
• and some regularization.
• Let’s talk about Unets!

21

Literature i

References

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the
difficulty of training deep feedforward neural networks.”
In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings. 2010,
pp. 249–256.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. http://www.deeplearningbook.org.
MIT Press, 2016.

22

http://www.deeplearningbook.org

Literature ii

[He+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.” In:
Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1026–1034.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch
normalization: Accelerating deep network training by
reducing internal covariate shift.” In: International
conference on machine learning. PMLR. 2015,
pp. 448–456.

23

Literature iii

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. “Dropout: A
Simple Way to Prevent Neural Networks from
Overfitting.” In: Journal of Machine Learning Research
15.56 (2014), pp. 1929–1958. url: http:
//jmlr.org/papers/v15/srivastava14a.html.

24

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

Code snippets

Using Optax-Optimizers

All common optimizers are available in the Optax library:
https://optax.readthedocs.io/en/latest/
Look for Adam in the documentation!
c r e a t i n g an o p t i m i z e r
opt = optax.adam(learning rate=0.001)

i n i t i a l i z i n g an o p t i m i z e r
opt state = opt.init(weights)

c o m u t i n g an u p d a t e .
updates, opt state = opt.update(

grads, opt state , weights)

a p l l y i n g a w e i g h t u p d a t e .
weights = optax.apply updates(

weights, updates)

25

https://optax.readthedocs.io/en/latest/

	Initialization
	Network optimization
	Overfitting
	Regularization
	References
	Code snippets

