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= Neural network optimization is non-convex. We aren't
guaranteed to find a global optimum.

= The outcome depends on the starting point and the optimizer.

= Consequently, one should choose the best possible starting
point and think about how to best traverse the optimization

landscape.
= Both initialization and optimization are hot research topics.

= As you will see, the science is by no means settled.



Initialization



Glorot-Initialization

For a layer with m input dimensions and n output dimensions. A
very common initialization was suggested by Glorot [GB10],
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For all possible position indices i,j. U denotes a Uniform

distribution. ML-Frameworks generally implement pseudo-random

versions of all major distributions.



He-Initialization

He-uniform-initialization [He+15] is the default for Linear-Layers in

Pytorch.
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this heuristic is also recommended in [GBC16].



LeCun-Normal-Initialization

For linear layers, Jax and Flax work with truncated normal

by default. N'(u, o) denotes the standard normal distribution with
mean p and standard deviation o. Outliers are redrawn if they are

distributions,

larger than 20.

It is generally ok to stick to the default set by your favorite
framework.



= We saw three different ways to initialize neural networks.
= [nitialization is an active research matter.

= |t is usually a good idea to stick to your framework’s default.



Network optimization



Gradient Descent

Following the literature [GBC16, chapter 8], the vector 6 will
denote all learnable network parameters. This simplification makes
it easier to write the general ideas down. Gradient descent now

looks like this,
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With the step counter 7, gradient operator V, cost function C,
inputs x, and outputs y. It is efficient to process multiple batches
at once. m denotes the batch size and € the step size.



Learning rate decay

[GBC16, chapter 8] recommends linear decay until step 7
ek = (1 — a)eg + aer (6)
with o = é After step 7 the step size typically remains the same.
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An example would be i.e. ¢g = 0.01, ¢, = 0.001 and 7 = 500. 8



Momentum

Momentum helps the optimizer to traverse through locally minimal
valleys, the formulation turns into,

gr = EVQZC(IC(X’,Q),YI), (7)
i=0

Vr = V1 — €87, (8)

97’+1 — 97’ — Vr. (9)

A new velocity term v appeared. Use v_; = 0.



The effect of momentum
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Figure: lllustration of the gradient steps taken by an optimizer with
momentum. Image taken from [GBC16].

10



An adaptive learning rate: RMSprop

The RMSprop method works especially well when recurrent
connections are present. It uses the update steps,

1 - i i
gr = ;Ve Z C(f(xl;e)vyl)v (10)
i=0
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The key novelty here is to scale the learning rate ¢ adaptively for

every step. ¢ is a small number used to avoid division by zero.
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The default: Adam

Adam (adaptive moments) introduces an additional scaling term,

& = V0 C(0) ), (13)

sr =pisr—1+ (1 —p1)gr (14)

rr=porr—1+ (1 —p2)gr © gr (15)
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Adam combines the Rmsprop-idea with momentum. Major deep
learning frameworks implement adam for you. Use optax.adam in

today’s exercise.
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We saw the three optimizers that usually appear in the literature.

Carefully tuned gradient descent with momentum can deliver

excellent performance.

RMSprop adds stability. Especially for hard problems, for
example with recurrent connections.

Adam often runs reliably for a wide range of problems.

The best optimizers don’t help us if we are overfitting.

Generally speaking, the question of the ideal optimizer choice is
unsettled [GBC16].
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Overfitting




Overfitting and early stopping
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Figure: Overfitting of a CNN on the MNIST data set. Figure from
[GBC16].
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Extending the data-set

Collecting more data is the most elegant way to prevent overfitting.
If collecting more data is impossible artificial extensions can help.

= |nput-noise
= |nput transforms
Consider, for example, an image:

= random crops,
= random left-right flips,
= or small random rotations,

are ways to avoid looking at an identical image again.
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Regularization




= Guard against overfitting.
= Improve generalization.

= Instead of regularization or additionally, it is also sometimes a
good idea to reduce the number of weights.
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L2-Norm Regularization

The idea here is to encourage sparsity in the weights by adding,
w
Cw(0) = Ar D IWil2 (19)
i=1
To the cost function. w denotes the total number of weight

objects in the network. The scaling factor A, € R must chosen by
hand. This is Thikonov-regularization, the machine learning way.
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Figure: Dropout as described in [Sri+14].

ining.

Idea: Randomly remove connections during tra

18



Idea: Normalize before every layer and optimize a scale and shift
separately [IS15]:
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Where x(!) denotes the input at layer /, while ,ug) and ay) are the
batch mean and standard deviation. 4{) and () must be learned
for each layer. For every feature position /,j up to the feature
height and width.
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= Regularization is sometimes required.

= Before spending a lot of time on regularization reduce the
model size.

= Look for models for your problem in the literature.

= Most of the time a regularizer is already built in.
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Conclusion

= We saw the most important initialization methods,
= the most important optimizers,
= and some regularization.

= Let's talk about Unets!
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Code snippets




Using Optax-Optimizers

All common optimizers are available in the Optax library:
https://optax.readthedocs.io/en/latest/
Look for Adam in the documentation!

# creating an optimizer

opt = optax.adam(learning._rate=0.001)

# initializing an optimizer

opt_state = opt.init(weights)

# comuting an update.

updates, opt_state = opt.update(
grads, opt_state, weights)

# apllying a weight update.

weights = optax.apply_updates(
weights, updates)
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