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Motivation



What is Segmentation?




Segmentation Types

= Semantic Segmentation: Classify each pixel in the image
= Instance Segmentation: Classify pixel based on the instances
of the object

= Panoptic Segmentation: Semantic + Instance Segmentation

SEMANTIC IMAGE INSTANCE PANOPTIC

SEGMENTATION SEGMENTATION SEGMENTATION

Figure: Types of segmentation.[Blo22]



Image segmentation in robotics

Figure: Images from the semantic kitti road scene segmentation dataset
[Gei+13].



Autonomous Driving - Laser segmentation

Z Fraunhofer
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Figure: A part of segmented point-cloud from TUM City Campus
dataset [Geh+17]. Full video can be found here.


https://obj-web.iosb.fraunhofer.de/content/3d-sensordaten/testdaten/tum-mls-2016/arcisstr_labeled.mp4

Medical Image segmentation

Figure: A transversal prostate image and it's expert segmentation
[Mey+19].



The U-Net architecture




he U-Net structure [RFB1
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Figure: The U-Net architecture [RFB15].
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Figure: UNet to be implemented for Prostate segmentation exercise



Loss function and Evaluation metric




The focal loss for segmentation problems

Focal loss functions are a standard approach in image
segmentation, it originally appeared in [Lin+17]. The general idea
is to increase the weight of rare classes. If classes are mutually

exclusive use,
L(o,1) =—1-(1—04(0))”-a-In(os(0)) (1)

to train your U-Net.



Intersection over union

True Positive

| « § A
Ground Truth Mask Predicted Mask loU
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Intersection over union (loU)

loU is calculated as a fraction of area of intersection and area of
union between GT and predicted masks.

From above example, loU can be calculated using confusion matrix
by the below formula

TP

| =
V=T Fp PN

where TP, FP and FN are True Positives, False Positives and False
Negatives respectvely.
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