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Motivation

• Neural networks are potent black-box methods.
• Some very deep convolutional neural networks have hundreds

of layers and use up to 600mb of disk storage.
• Let’s do what we can to open the box!!
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Linear classifiers



Definition of a linear classifier

Linear classifiers consist of a dense layer without an activation,

o = Ax + b. (1)

With A ∈ Rm,n, x ∈ Rn and b ∈ Rn. Linear only works on simple
problems that are linearly separable.
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Binary MNIST
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Cross-Entropy

Recall the definition of the cross entropy

Cce(y, o) = −
no∑
k

(yk ln ok) + (1 − yk) ln(1 − ok). (2)

With y, o ∈ Rno defined as vectors of length no.
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Cross-Entropy

To understand what is going on lets consider the two cases yk = 0
and yk = 1.
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Cross-entropy pushes the output towards the label.
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Interpretation by examination
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If linear is possible linear is great!!
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What deep-fakes are

Generative models can generate images. Consider the samples
below:
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What blows the con?
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Fake detectors
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StyleGan-generated fakes can be classified with around 99%
accuracy this way [Fra+20].
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Summary

• For linearly separable binary problems weight inspection works
great!

• Engineered features allow the inspection to reveal something
about the data.
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Input Optimization



Motivation

Let’s be honest. Most linearly separable binary problems are
academic.
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An input CNN-Layer

Kernel-shape: (3, 3, 1, 32)
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Figure: Plot of the input layer kernel weights trained on MNSIT. 13



Motivation Reloaded

• How do we verify the correct operation of deep nonlinear
networks?

• It is very hard to interpret the weights of deep networks
directly.

• Unit tests would require extensive re-training.
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How to make a single neuron extremely happy

What if we turned the optimization problem around and optimized
the input instead of the weights? Consider

max
x

yi = f (x, θ), (3)

with network weights θ, input x, and yi , the activation of the i-th
output neuron!
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The 6-neurons favorite input

Starting from x = 1 ∈ R1,28,28,1 using image µ-σ-normalization
after every step with a step size of one and a positive update yields:

0 5 10 15 20 25

0

5

10

15

20

25

16



The image net dataset

Figure: Image Net sample images as shown in [Rus+15]. Today
14,197,122 annotated images. Typically with 1000 object categories.
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AlexNet

Figure: The Alexnet-architecture used for classify imagenet in 2010
[KSH17]
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Early Alexnet layers

Figure: Plot from [KSH17].
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Saliency Maps

[SVZ13] tell us to optimize

arg max
I

Sc(I) − λ|I|22. (4)

With Sc , the classification score for class c. I is the input image,
and |I|2 represents the 2-norm image channels. λ is a
regularization parameter.
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CNN-Saliency Map

Figure: Input optimization saliency maps of a deep CNN trained on
imagenet as shown in [SVZ13].
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Integrated-gradients

[STY17] propose to estimate individual input contributions to an
output neuron via,

IntegratedGradsi(x) = (xi − x ′
i ) ·

m∑
k=1

∂F (x ′ + k
m · (x − x ′))
∂xi

. (5)

∂F
∂xi

denotes the gradients with respect to the input color channels
i . x′ denotes a baseline black image. And x symbolizes an input
we are interested in. Finally, m denotes the number of summation
steps from the black baseline image to the interesting input.
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Integrating the gradients of a multilayer CNN on MNIST

Integrated gradients for the zero neuron on the MNIST-validation
set.
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Images from the Wild

Figure: Integrated gradient visualization of input saliency for a very
deep-CNN trained on Imagenet [Den+09]. Image taken from [STY17]. 24



Conclusion

• Before you do anything else, look at the openai microscope at
https://microscope.openai.com/models.

• We can look at features and weights and work with input
optimization to understand what is going on.
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