
Sequence Processing

Moritz Wolter
September 29, 2023

High-Performance Computing and Analytics Lab, Uni Bonn

Overview

Recurrent neural networks

Elman-RNN

Long Short Term Memory

Gated recurrent Units

Orthogonal networks

Applications

Neural Attention and Transformers

Code snippets

1

Motivation

• Thus far we have never integrated information over time.
• We want the ability to create internal memory.
• Consider the sentence: I live in Paris. I speak ...
• ... French.
• Clearly it is likely for someone in Paris to speak French.
• Memory should help networks taking Paris into account when

deciding what language is spoken.

2

Recurrent neural networks

Motivation

• Recurrent neural networks are often considered the goto
choice for sequences.

• Chapter ten in [GBC16], for example, bears the title
”Sequence Modeling: Recurrent and Recursive Nets”.

3

Elman-recurrent neural networks

A simple solution is to add a state to the network and feed this
state recurrently back into the network [Elm90],

ht = Whht + Wxxt + b, (1)
ht+1 = f (ht). (2)

4

Elman-recurrent neural networks

ht−1xt

w = [xt , ht−1]T

tanh(Ww + b)

ht

5

Unrolling in Time

time

sp
ac

e

xt

yt

x1

h1

x2

h2

xn

hn

Figure: The rolled (left) cell can be unrolled (right) by considering all
inputs it saw during the current gradient computation iteration.

6

Stability of recurrent connections

For an intuition. Consider a linear network without activations or
inputs.

ht+1 = Whht (3)

The evolution of the h-sequence is guided by it’s largest eigenvalue.
If an eigenvalue larger than one exists. The state explodes. If all
eigenvalues are smaller than one the state vanishes [GBC16].

7

Long Short Term Memory (LSTM)

σ(Wf w + bf): Forget Gate

σ(Wiw + bi): Input Gate

σ(Wow + bo): Output Gate

ct−1 xtht−1

w = [xt ; ht−1]

σ(Wf w + bf) σ(Wiw + bi) tanh(Wcw + bc)

×
ft

×

it

c̄t+

ct

tanh(ct) σ(Wow + bo)

×
ot

ht

Figure: An LSTM cell as described in[HS97; Gre+16].

8

Long Short Term Memory (LSTM)

Like a differentiable memory chip [Gra12] LSTM-memory can store
nh numbers. Gates govern all changes to the cell state. Gate and
state equations are defined as [HS97; Gre+16]

zt = tanh(Wzxt + Rzht−1 + bz), , (4)
it = σ(Wixt + Riht−1 + pi ⊙ ct−1 + bi), (5)
ft = σ(Wf xt + Rf ht−1 + pf ⊙ ct−1 + bf), (6)
ct = zt ⊙ it + ct−1 ⊙ ft , (7)
ot = σ(Woxt + Roht−1 + po ⊙ ct + bo), (8)
ht = tanh(ct) ⊙ ot . (9)

Potential new states zt are called block input. i is called the input
gate. The forget gate is f and o denotes the output gate. p ∈ Rnh

are peephole weights, W ∈ Rni ×nh denotes input, R ∈ Rno×nh are
the recurrent matrices. ⊙ indicates element-wise products. 9

Long Short Term Memory (LSTM)

ct−1 xtht−1

w = [xt , ht−1]T

{w, ct−1}

σ(Wf w + pf ⊙ ct−1 + bf)

σ(Wiw + pi ⊙ ct−1 + bi)

σ(Woz + po ⊙ ct + bo)

tanh(Wcw + bc)

Forget Gate

Input Gate

Output Gate

⊙
ft

⊙

it

zt+

ct

tanh(ct)

⊙
ot

ht

Figure: An LSTM-cell with peephole connections as described in [HS97;
Gre+16] 10

Gated recurrent Units

rt = σ(Wr ht−1 + Vr xt + br), (10)
ut = σ(Wuht−1 + Vuxt + bu) (11)
zt = tanh(W(rt ⊙ ht−1) + Vxt + b), (12)
ht = ut ⊙ zt + (1 − ut) ⊙ ht−1. (13)

ht ∈ Rnh denotes the cell state and output at time t. The block
input is called zt ∈ Rnh . The reset r ∈ Rnh and update gates
u ∈ Rnh take care of memory management. W ∈ Rni ×nh denote
input matrices, V ∈ Rnh×nh is used for recurrent weight matrices.

11

Gated recurrent units

Update Gate

Reset Gate

ht−1 xt

wt = [xt ht−1]T

σ(Wuwt + bu)

σ(Wr wt + br)

⊙
ht−1

r

tanh(Wxt + Vht−1 + b)
ht−1

1 − ut

⊙
ut

⊙

ut

zt+

ht

12

Stiefel Manifold Weight Updates [Wisdom2016]

ht = ReLU(Whht + Wxxt + b) (14)

Wk+1 = (I + λ

2 Ak)−1(I − λ

2 Ak)Wk , (15)

where A = W∇wF T − WT ∇wF . (16)

y

x
(∞, 0)

(0, ∞) y

x
(1, 0)

Figure: Fix the optimized matrix eigenvalues onto the unit circle. 13

Summary

• LSTM works like a differentiable memory chip.
• When in doubt, use LSTM.

14

Applications

Time-series forecasting

0 500 1,000 1,500 2,000 2,500 3,000

0.8

1

1.2

·104

Time [h/4]

Po
we

rL
oa

d
[M

W
]

Power Load - January 2016

x
y

z

Figure: Monovariate power-load and multivariate motion-capture time
series data.

15

Day-ahead power-load

Day-ahead power load forecasting using European Network of
Transmission system operators for electricity data: [WGY20]

0 5 10 15 20 25

0.8

0.9

1

1.1

·104

time [h]

po
w

er
-lo

ad
[M

W
]

time
time-window
fft
entsoe.eu
ground-truth

0 20 40 60 80

106

epochs

te
st

m
se

[M
W

]

16

Language Processing

One hot encoding for letters. A possible encoding looks for all
characters in a dataset. The number of occurring characters
determines the length of every one-hot character vector. A system
that accepts text and produces text, therefore, maps one-hot
encoded sequences onto each other.

17

Neural Keyboard

Given a sequence of input letters or words LSTM, for example, can
model the probability of the next letter or word.

pn(yi |y1, y2, . . . , yi−1 = LSTM(yi−1, ci−1, hi−1) (17)

This could, for example, help users type.

18

Conclusion

• RNNs are versatile and suitable for many different sentence
processing tasks.

• But, there’s more!

19

Example: Machine Translation

[BCB15] used RNN for the task of machine translation.

Figure: An RNN-based translation system. Figure from [BCB15].

20

Neural attention in machine translation

Attention weights group related inputs together, allowing a
decoder to find a suitable translation.

Figure: Attention plots as observed by [BCB15].

21

Speech Processing [Cha+15]

x1 x2 x3 x4 x5 x6 x7 x8 xT

Listener:

h1 h2 hu

H = (h1, h2, . . . , hu)

<sos> y2 y3 ys−1

y2 y3 y4 <eos>

H H HH

c1 c2

Speller:

22

Attention weights

0 10 20 30 40

0

50

100

150

Decoding time

Co
m

pr
es

se
d

fe
at

ur
e

tim
e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure: Attention weights for the speech processing example. On a
TIMIT-recording.

23

Neural Attention and Transformers

Bahadanau attention

Proposed in [BCB15],

ci =
Tx∑
j=i

αijhj (18)

The idea is to find new αs for every decoding time step i . These
are computed using a softmax

αij = exp(eij)∑Tx
k=1 exp(eik)

(19)

if the alignment model outputs eij = a(si−1, hj). Finally, a denotes
a feedforward network function of the decoder state si−1 and
annotation hj .

24

Transformers

Figure: The transformer architecture as shown in [Vas+17] 25

Transformers

[Vas+17] defines dot product attention as,

C = σs(QKT
√

dk
)V (20)

With context C ∈ Rt,dk , queries Q ∈ Rt,dk , keys K ∈ Rt,dk , and
values V ∈ Rt,dk . σs denots the softmax.

26

Matrix multiplication and dot products

We can express matrix multiplication as dot products.

QK =


q1,1...dk · k1...dk ,1 q1,1...dk · k1...dk ,2 . . .

q2,1...dk · k1...dk ,1 q2,1...dk · k1...dk ,2 . . .
...

 (21)

Alternatively the dot product of two vectors can be written as:

q · k = |q||k|cos(θ) (22)

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1

cos(x)

27

Denoising Diffusion Probabilistic Models

Figure: Diffusion models rely on a combination of unets and self
attention [HJA20].

28

Conclusion

• Transformers dominate large parts of modern deep learning.
• Their versatility comes at the cost of an enourmous data

hunger.
• CNN and RNN are still often the better choice on smaller

data-sets.
• In today’s exercise you can choose to train a generative RNN

or a generative transformer.

29

Literature i

References

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. “Neural Machine Translation by
Jointly Learning to Align and Translate.” In: CoRR
abs/1409.0473 (2015).

[Cha+15] William Chan, Navdeep Jaitly, Quoc V Le, and
Oriol Vinyals. “Listen, attend and spell.” In: arXiv
preprint arXiv:1508.01211 (2015).

[Elm90] Jeffrey L Elman. “Finding structure in time.” In:
Cognitive science 14.2 (1990), pp. 179–211.

30

Literature ii

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

[Gra12] Alex Graves. “Supervised sequence labelling.” In:
Supervised sequence labelling with recurrent neural
networks. Springer, 2012, pp. 5–13.

[Gre+16] Klaus Greff, Rupesh K Srivastava, Jan Koutnik,
Bas R Steunebrink, and Jürgen Schmidhuber. “LSTM:
A search space odyssey.” In: IEEE transactions on
neural networks and learning systems 28.10 (2016),
pp. 2222–2232.

31

Literature iii

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising
diffusion probabilistic models.” In: Advances in neural
information processing systems 33 (2020),
pp. 6840–6851.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long
short-term memory.” In: Neural computation 9.8
(1997), pp. 1735–1780.

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. “Attention is all
you need.” In: Advances in neural information
processing systems 30 (2017).

32

Literature iv

[WGY20] Moritz Wolter, Juergen Gall, and Angela Yao.
“Sequence Prediction using Spectral RNNs.” In: 29th
International Conference on Artificial Neural Networks.
2020.

33

Code snippets

Sequence coding with dictionaries

for int seq in sequences:
char seq = []

for int char in int seq:
char seq.append(

inv vocab[int(int char)])
res.append(char seq)

34

	Recurrent neural networks
	Elman-RNN
	Long Short Term Memory
	Gated recurrent Units
	Orthogonal networks

	Applications
	Neural Attention and Transformers
	References
	Code snippets

