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= Thus far we have never integrated information over time.
= We want the ability to create internal memory.

= Consider the sentence: | live in Paris. | speak ...

= ... French.

= Clearly it is likely for someone in Paris to speak French.

= Memory should help networks taking Paris into account when
deciding what language is spoken.



Recurrent neural networks



= Recurrent neural networks are often considered the goto
choice for sequences.

= Chapter ten in [GBC16], for example, bears the title
"Sequence Modeling: Recurrent and Recursive Nets”.



Elman-recurrent neural networks

A simple solution is to add a state to the network and feed this
state recurrently back into the network [EIm90],

h; = Wyh; + W,x, + b, (1)
hei1 = f(he). (2)



Elman-recurrent neural networks

h,

tanh(Ww + b)

w = [Xt, ht—l]T

Xt h:_1



Unrolling in Time

space

time

Figure: The rolled (left) cell can be unrolled (right) by considering all
inputs it saw during the current gradient computation iteration.



Stability of recurrent connections

For an intuition. Consider a linear network without activations or

inputs.
ht+1 = Whht (3)

The evolution of the h-sequence is guided by it's largest eigenvalue.
If an eigenvalue larger than one exists. The state explodes. If all
eigenvalues are smaller than one the state vanishes [GBC16].



Long Short Term Memory (LSTM)

he o(Wrw + br):  Forget Gate
1 @
X o(Wiw +b;):  Input Gate
tanh(c) a(Wow +b,)  o(Wow + by): Output Gate
=
" 2
il & .
X It
o(Wrw + by) o(Wiw +b;)  tanh(Wew + be)

’*w = [x¢; htl]T
Ce-1 hey Xt

Figure: An LSTM cell as described in[HS97; Gre+16].



Long Short Term Memory (LSTM)

Like a differentiable memory chip [Gral2] LSTM-memory can store
ny numbers. Gates govern all changes to the cell state. Gate and
state equations are defined as [HS97; Gre+16]

z; = tanh(W,x; + R;h¢_1 + b;), , (4)
it = o(W;x; + Rihs—1 + p; ® c;—1 + bj), (5)
fi = o(Wext + Rehe_1 + pr © €r1 + by), (6)
Ct =2 Ot +cto1 OF, (7)
0: = 0(Wox; + Rohi_1 + po ® ¢; + by), (8)
h; = tanh(c;) ® o¢. (9)

Potential new states z; are called block input. i is called the input
gate. The forget gate is f and o denotes the output gate. p € R"

are peephole weights, W € R"*" denotes input, R € R"*" are

the recurrent matrices. © indicates element-wise products. 9



Long Short Term Memory (LSTM)
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Figure: An LSTM-cell with peephole connections as described in [HS97;
Gre+16] 10



Gated recurrent Units

re = o(W,he_1 + Vyx¢ + b,), (10)
u; = o(Wyhe_1 + Vyxs + by) (11)
z; = tanh(W(r; © hy_1) + Vx¢ + b), (12)
hy=u©®z; + (1 —u) ©heg. (13)

h; € R™ denotes the cell state and output at time t. The block

input is called z; € R". The reset r € R" and update gates

u € R" take care of memory management. W € R"*" denote

input matrices, V € R"*" is used for recurrent weight matrices.
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Gated recurrent units
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Stiefel Manifold Weight Updates [Wisdom2016]

ht = ReLU(Whht + WXXt + b) (14)
A A
Wk+1 = (I + EA[() (I — EAk)Wk, (15)
where A =WV,F —W'V,F. (16)
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Figure: Fix the optimized matrix eigenvalues onto the unit circle. 13



= LSTM works like a differentiable memory chip.
= When in doubt, use LSTM.
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Applications




Time-series forecasting

10 Power Load - January 2016
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Figure: Monovariate power-load and multivariate motion-capture time
series data.
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Day-ahead power-load

Day-ahead power load forecasting using European Network of

Transmission system operators for electricity data: [WGY20]
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Language Processing

One hot encoding for letters. A possible encoding looks for all
characters in a dataset. The number of occurring characters
determines the length of every one-hot character vector. A system
that accepts text and produces text, therefore, maps one-hot
encoded sequences onto each other.
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Neural Keyboard

Given a sequence of input letters or words LSTM, for example, can
model the probability of the next letter or word.

pa(yily1, y2, .-, Yi-1 = LSTM(yi—1, ¢i—1, hi—1) (17)

This could, for example, help users type.
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Conclusion

= RNNs are versatile and suitable for many different sentence
processing tasks.

= But, there's morel!
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Example: Machine Translation

[BCB15] used RNN for the task of machine translation.

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word ¥, given a source
sentence (1, Lo, . .., 27).

Figure: An RNN-based translation system. Figure from [BCB15].
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Neural attention in machine translation

Attention weights group related inputs together, allowing a

decoder to find a suitable translation.
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Figure: Attention plots as observed by [BCB15].
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Speech Processing [Cha+15]
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Attention weights
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Figure: Attention weights for the speech processing example. On a
TIMIT-recording.
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Neural Attention and Transformers




Bahadanau attention

Proposed in [BCB15],

Tx
Ci = E Oé,'jh_,' (18)
j=i

The idea is to find new as for every decoding time step i. These
are computed using a softmax

exp(ejj)

Oé,'j——
ity exp(ei)

(19)
if the alignment model outputs e; = a(sj_1, h;). Finally, a denotes
a feedforward network function of the decoder state s;_; and

annotation h;.
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Transformers
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Figure: The transformer architecture as shown in [Vas+17] 25



Transformers

[Vas+17] defines dot product attention as,
QK™
Vdk

With context C € RH:%, queries Q € RH%, keys K € R%%, and
values V € Rt9 . o denots the softmax.

C =0 Vv (20)
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Matrix multiplication and dot products

We can express matrix multiplication as dot products.

q11.d, " ki.d,1 1.4, - Ki g2
QK = | 921..4, " ki..d,1 9214, ki g2 - (21)

Alternatively the dot product of two vectors can be written as:

a- k = [al[k|cos(6) (22)

cos(x)

NN
\ )
N \/ \/

—
-6 —4 -2 0 2 4 6 27




Denoising Diffusion Probabilistic Models

Figure 3: LSUN Church samples. FID=7.89 Figure 4: LSUN Bedroom samples. FID=4.90

Figure: Diffusion models rely on a combination of unets and self
attention [HJA20].
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Conclusion

= Transformers dominate large parts of modern deep learning.

= Their versatility comes at the cost of an enourmous data
hunger.

= CNN and RNN are still often the better choice on smaller
data-sets.

= In today’s exercise you can choose to train a generative RNN
or a generative transformer.
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Code snippets




Sequence coding with dictionaries

for int_seq in sequences:
char_seq = []
for int_char in int_seq:
char_seq.append/(
inv_vocab[int(int_char)])
res.append(char_seq)
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