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Motivation

• Thus far we have never integrated information over time.
• We want the ability to create internal memory.
• Consider the sentence: I live in Paris. I speak ...
• ... French.
• Clearly it is likely for someone in Paris to speak French.
• Memory should help networks taking Paris into account when

deciding what language is spoken.
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Recurrent neural networks



Motivation

• Recurrent neural networks are often considered the goto
choice for sequences.

• Chapter ten in [GBC16], for example, bears the title
”Sequence Modeling: Recurrent and Recursive Nets”.
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Elman-recurrent neural networks

A simple solution is to add a state to the network and feed this
state recurrently back into the network [Elm90],

ht = Whht + Wxxt + b, (1)
ht+1 = f (ht). (2)
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Elman-recurrent neural networks

ht−1xt

w = [xt , ht−1]T

tanh(Ww + b)

ht
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Unrolling in Time
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Figure: The rolled (left) cell can be unrolled (right) by considering all
inputs it saw during the current gradient computation iteration.
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Stability of recurrent connections

For an intuition. Consider a linear network without activations or
inputs.

ht+1 = Whht (3)

The evolution of the h-sequence is guided by it’s largest eigenvalue.
If an eigenvalue larger than one exists. The state explodes. If all
eigenvalues are smaller than one the state vanishes [GBC16].

7



Long Short Term Memory (LSTM)

σ(Wf w + bf): Forget Gate

σ(Wiw + bi): Input Gate

σ(Wow + bo): Output Gate

ct−1 xtht−1

w = [xt ; ht−1]

σ(Wf w + bf) σ(Wiw + bi) tanh(Wcw + bc)

×
ft

×

it

c̄t+

ct

tanh(ct) σ(Wow + bo)

×
ot

ht

Figure: An LSTM cell as described in[HS97; Gre+16].
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Long Short Term Memory (LSTM)

Like a differentiable memory chip [Gra12] LSTM-memory can store
nh numbers. Gates govern all changes to the cell state. Gate and
state equations are defined as [HS97; Gre+16]

zt = tanh(Wzxt + Rzht−1 + bz), , (4)
it = σ(Wixt + Riht−1 + pi ⊙ ct−1 + bi ), (5)
ft = σ(Wf xt + Rf ht−1 + pf ⊙ ct−1 + bf ), (6)
ct = zt ⊙ it + ct−1 ⊙ ft , (7)
ot = σ(Woxt + Roht−1 + po ⊙ ct + bo), (8)
ht = tanh(ct) ⊙ ot . (9)

Potential new states zt are called block input. i is called the input
gate. The forget gate is f and o denotes the output gate. p ∈ Rnh

are peephole weights, W ∈ Rni ×nh denotes input, R ∈ Rno×nh are
the recurrent matrices. ⊙ indicates element-wise products. 9



Long Short Term Memory (LSTM)
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Figure: An LSTM-cell with peephole connections as described in [HS97;
Gre+16] 10



Gated recurrent Units

rt = σ(Wr ht−1 + Vr xt + br ), (10)
ut = σ(Wuht−1 + Vuxt + bu) (11)
zt = tanh(W(rt ⊙ ht−1) + Vxt + b), (12)
ht = ut ⊙ zt + (1 − ut) ⊙ ht−1. (13)

ht ∈ Rnh denotes the cell state and output at time t. The block
input is called zt ∈ Rnh . The reset r ∈ Rnh and update gates
u ∈ Rnh take care of memory management. W ∈ Rni ×nh denote
input matrices, V ∈ Rnh×nh is used for recurrent weight matrices.
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Gated recurrent units

Update Gate

Reset Gate
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Stiefel Manifold Weight Updates [Wisdom2016]

ht = ReLU(Whht + Wxxt + b) (14)

Wk+1 = (I + λ

2 Ak)−1(I − λ

2 Ak)Wk , (15)

where A = W∇wF T − WT ∇wF . (16)
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Figure: Fix the optimized matrix eigenvalues onto the unit circle. 13



Summary

• LSTM works like a differentiable memory chip.
• When in doubt, use LSTM.
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Applications



Time-series forecasting
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Figure: Monovariate power-load and multivariate motion-capture time
series data.
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Day-ahead power-load

Day-ahead power load forecasting using European Network of
Transmission system operators for electricity data: [WGY20]
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Language Processing

One hot encoding for letters. A possible encoding looks for all
characters in a dataset. The number of occurring characters
determines the length of every one-hot character vector. A system
that accepts text and produces text, therefore, maps one-hot
encoded sequences onto each other.
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Neural Keyboard

Given a sequence of input letters or words LSTM, for example, can
model the probability of the next letter or word.

pn(yi |y1, y2, . . . , yi−1 = LSTM(yi−1, ci−1, hi−1) (17)

This could, for example, help users type.
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Conclusion

• RNNs are versatile and suitable for many different sentence
processing tasks.

• But, there’s more!
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Example: Machine Translation

[BCB15] used RNN for the task of machine translation.

Figure: An RNN-based translation system. Figure from [BCB15].
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Neural attention in machine translation

Attention weights group related inputs together, allowing a
decoder to find a suitable translation.

Figure: Attention plots as observed by [BCB15].
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Speech Processing [Cha+15]

x1 x2 x3 x4 x5 x6 x7 x8 xT

Listener:

h1 h2 hu

H = (h1, h2, . . . , hu)

<sos> y2 y3 ys−1

y2 y3 y4 <eos>

H H HH

c1 c2

Speller:
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Attention weights
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Figure: Attention weights for the speech processing example. On a
TIMIT-recording.
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Neural Attention and Transformers



Bahadanau attention

Proposed in [BCB15],

ci =
Tx∑
j=i

αijhj (18)

The idea is to find new αs for every decoding time step i . These
are computed using a softmax

αij = exp(eij)∑Tx
k=1 exp(eik)

(19)

if the alignment model outputs eij = a(si−1, hj). Finally, a denotes
a feedforward network function of the decoder state si−1 and
annotation hj .
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Transformers

Figure: The transformer architecture as shown in [Vas+17] 25



Transformers

[Vas+17] defines dot product attention as,

C = σs(QKT
√

dk
)V (20)

With context C ∈ Rt,dk , queries Q ∈ Rt,dk , keys K ∈ Rt,dk , and
values V ∈ Rt,dk . σs denots the softmax.
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Matrix multiplication and dot products

We can express matrix multiplication as dot products.

QK =


q1,1...dk · k1...dk ,1 q1,1...dk · k1...dk ,2 . . .

q2,1...dk · k1...dk ,1 q2,1...dk · k1...dk ,2 . . .
... ... . . .

 (21)

Alternatively the dot product of two vectors can be written as:

q · k = |q||k|cos(θ) (22)
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Denoising Diffusion Probabilistic Models

Figure: Diffusion models rely on a combination of unets and self
attention [HJA20].
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Conclusion

• Transformers dominate large parts of modern deep learning.
• Their versatility comes at the cost of an enourmous data

hunger.
• CNN and RNN are still often the better choice on smaller

data-sets.
• In today’s exercise you can choose to train a generative RNN

or a generative transformer.
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Code snippets



Sequence coding with dictionaries

for int seq in sequences:
char seq = []

for int char in int seq:
char seq.append(

inv vocab[int(int char)])
res.append(char seq)
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