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The notion that behaviour influences perception seems self-
evident, but the mechanism of their interaction is not known.
Perception and behaviour are usually considered to be separate
processes. In this view, perceptual learning constructs compact
representations of sensory events, reflecting their statistical
properties’?, independently of behavioural relevance®*. Beha-
vioural learning™®, however, forms associations between percep-
tion and action, organized by reinforcement”®, without regard
for the construction of perception. It is generally assumed that
the interaction between these two processes is internal to the
agent, and can be explained solely in terms of the neuronal
substrate’. Here we show, instead, that perception and behaviour
can interact synergistically via the environment. Using simulated
and real mobile robots, we demonstrate that perceptual learning
directly supports behavioural learning and so promotes a pro-
gressive structuring of behaviour. This structuring leads to a
systematic bias in input sampling, which directly affects the
organization of the perceptual system. This external, environ-
mentally mediated feedback matches the perceptual system to the
emerging behavioural structure, so that the behaviour is
stabilized.

One reason for the lack of progress in understanding the inter-
relationship of behaviour and perception is experimental intract-
ability. An explanation of their coupling requires detailed analysis at
both the behavioural and neuronal levels. Our approach was to
bypass the animal experimental difficulty by using a mobile robot,
for which it is possible to fully observe and quantify perception and
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behaviour. The robot is controlled by a neural model, called
distributed adaptive control (DAC), that includes mechanisms for
perceptual and behavioural learning'®'". The DAC architecture (see
Fig. 1 and Methods) consists of three layers: ‘reactive’, ‘adaptive’ and
‘contextual’ control.

The reactive control layer implements a repertoire of basic reflex
actions where low-complexity sensory events, unconditioned stim-
uli (US), trigger simple actions, unconditioned responses (UR), via
an internal state (IS) representation. As a result of learning at the
level of adaptive control, the purely reactive activation of the IS
populations by US events is progressively replaced by acquired
representations of sensory events, conditioned stimuli (CS), and the
generation of conditioned responses (CR)'"'>. US events are the
initial reinforcers of this learning process. The local learning
mechanism that is used automatically generates a measure, D, of
the discrepancy between expected and actual CS events (see
Methods). When D falls below a specified transition threshold,
0p, the contextual control layer is enabled. This layer is a beha-
vioural learning system that constructs higher-order represen-
tations of the temporal order of the sensori-motor representations
constructed by the adaptive layer (see Methods).

Representations of CS and CR events are stored in short-term
memory (STM) when the adaptive layer triggers CRs. The content
of STM is stored in long-term memory (LTM) when a goal state is
reached, such as when a target is found. CS representations of the
LTM of the contextual layer are matched to those generated by the
adaptive layer. The best-matching CS representation at the level of
contextual control will define the next action by projecting its CR
representation onto the motor population M when the reactive layer
is quiescent. Chaining through a LTM sequence is achieved through
a biased competition mechanism (see Methods). DAC is a practical
model of how different learning systems in the mammalian brain act
together to generate adaptive goal-oriented behaviour, and is a
standard in the field of new artificial intelligence and behaviour-
based robotics' ™. Moreover, it exhibits the regularities of bayesian
decision-making that are thought to be one of the characteristics of
human cognition'”'.

We first investigated the hypothesis that the performance of
the robot is enhanced through the contextual layer. To test this
hypothesis, we used both simulated and real-world robots in a
foraging task where collisions had to be minimized while the
number of targets found had to be maximized. We distinguished

Contextual control
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Behavigural
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Adaptive CONtrol - e T

cs *| Perceptual |*
«| learning 2

Reactive control === |18 L. .M |
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Figure 1 Distributed adaptive control. DAC is based on the assumption that adaptive
behaviour results from three tightly coupled layers of control: reactive, adaptive and
contextual control. Each box represents a neuronal population. Arrows indicate the
connections between these populations. US, unconditioned stimulus population. CS,
conditioned stimulus population. IS, internal state populations. M, motor neuron
population. UR, unconditioned response. CR, conditioned response. STM, short-term
memory. LTM, long-term memory. See text and Methods for explanation.
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two conditions, in which the contextual layer was either ‘enabled” or
‘disabled”

In simulation experiments (see Fig. 2a and Supplementary
Information), we found that the adaptive layer improved the
performance of the robot through a learning-dependent avoidance
of collisions, reflected in the increase of the target/collision ratio
(Fig. 2b). We also observed that at the onset of the second
stimulation period, the performance of the two conditions diverges:
in the enabled condition, performance is strongly enhanced com-
pared with the disabled condition. This difference is due to the
activation of the contextual control layer in the enabled condition,
as can be deduced from the evolution of the discrepancy measure D
(Fig. 2c)—shortly after the onset of the second stimulation period,
the D value falls below the transition threshold 6.
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Figure 2 Experimental protocol and performance in simulated robot experiments for the
disabled and enabled conditions using 1,000 exemplars per condition. The initial position
and orientation of the robots were randomized. a, Each experiment consists of two cycles.
Each cycle commences with a stimulation period (2,000 time steps), in which the targets
emit a signal (US™), followed by a recall period (5,000 time steps), in which the target
signals are absent. b, The ratio between the number of targets found and accumulated
collisions averaged in non-overlapping time windows of 100 time steps. ¢, Evolution of the
discrepancy measured, D. The dotted horizontal line indicates the value of the transition
threshold, 6p.
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During the second stimulation and recall periods, the D value of
the enabled condition is markedly below that of the disabled
condition. This reduction is accompanied by a significantly lower
value of the average absolute change in synaptic efficacies of the
connections between the CS and IS populations: enabled [|[AW|| =
2.4%X1072, disabled ||AW[[=2.6X10"2 (t-test, P << 0.001).
Hence, the transition to contextual control leads to a reduction of
the discrepancy between predicted and actual CS events and to a
stabilization of the synaptic weights of the adaptive control layer.
However, our model has no internal feedback from the contextual
to the adaptive control layer: D and AW are properties local to the
perceptual learning system. Therefore, this difference must be due
to the difference in the overt behaviour generated in the two
conditions and the systematic bias in the sampling of CS events
that this difference causes, that is, behavioural feedback. That is,
behaviour is less variable when the contextual layer is enabled,
thereby reducing the variability of the sampled sensory inputs. We
tested this hypothesis by comparing the entropies of behaviour and
sampled stimuli between the two conditions (see Supplementary
Information).

We characterized the behavioural entropy, Hp, of the distribution
of positions visited for both conditions in an experiment of 10° time
steps, using the same protocol as above (Fig. 2a). In the disabled
condition, Hg was 15.1, whereas the enabled condition showed a
lower Hg value of 14.2. These numbers can be compared with the
maximal entropy of 15.4, obtained from a uniform distribution of
positions; and to an Hy of 11.2 for a minimal cyclic trajectory that
follows the shortest path between subsequent targets. The difference
in Hg between a uniform distribution of positions and the disabled
condition can be explained by the learned avoidance behaviour that
causes the robot to avoid the regions close to obstacles. The
additional reduction of Hy in the enabled condition is due to a
further task-dependent structuring of behaviour (see also real robot
results below).

We assessed whether the structuring of behaviour quantified by
Hp is associated with a change in the input statistics by calculating
the sampling entropy, Hs, of the states of the CS-related sensor. Hg
was lower (6.80) for the enabled condition than for disabled (7.95),
demonstrating that the structuring of behaviour displayed in the
enabled condition is associated with a marked reduction in the
variability of the sampled CS events. We deduce that the reduction
in behavioural variability, which results from behavioural learning,
reduces the set of inputs that the perceptual learning system must
classify. As a result of this behavioural feedback, the structures for
perceptual learning become adjusted to a smaller set of input states.
This change is reflected in the reduction and stabilization of D
(Fig. 2c) and the reduced value of the synaptic changes we observed
in the enabled condition compared with disabled.

So far we have demonstrated the effect of behavioural feedback
on perceptual learning. However, its implications extend beyond
sensory classification alone. In our model, the transition to the use
of contextual control occurs when D falls below a fixed threshold,
0p. Hence, behavioural feedback, because it reduces D, may favour
the transition to contextual control. To test this hypothesis, we
recorded the downward crossings through 0, for the experiments
reported in Fig. 2. On average, these transitions occurred near the
onset of the second stimulation period (Fig. 2c). However, in
individual experiments, D does not decrease monotonically and
small fluctuations of D around 6p, in the enabled condition, result
in oscillations between activating or deactivating contextual con-
trol. For the disabled condition, we observed that, on average,
oscillations around the transition threshold occurred 6.31 times,
whereas for the enabled condition these oscillations were strongly
reduced to 3.86. Because there is no mechanism in our model that
stabilizes the transition to contextual control, we conclude that this
stabilization occurs through behavioural feedback. The switch to
contextual control indirectly reduces D through behaviour, and this
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Figure 3 Micro-robot experiments. a, The CS is provided by a colour charge-coupled

device (CCD) camera (1), whereas aversive and appetitive USs, defined as collisions and
the level of ambient light, respectively, are provide by the six frontal infrared sensors (2).
Locomotion is provided by two wheels (3). b, ¢, The environment is surrounded by a yellow

reduction of D in turn directly favours contextual control. Hence,
our simulation experiments show that behavioural feedback not
only matches the perceptual system to the emerging behavioural
structure, but also in turn stabilizes behavioural learning.

We assessed the generality of our results by applying our model to
a similar foraging task using the real-world robot Khepera' (Fig. 3a
and Supplementary Information). The task requires the robot to
learn to avoid collisions (US ) while visiting illuminated regions in
the environment (US™) as often as possible. The CSs are defined by
different colours present in the environment, that is, a yellow wall
and coloured patches on the floor.

The trajectories during the recall test show an organization of
behaviour consistent with the behavioural entropy measures
obtained in the simulation experiments (Fig. 3b, c). In the disabled
condition (Fig. 3b), the robot associated yellow patches with
aversive events and learned to avoid collisions with the walls of
the arena. However, the overall behaviour of the robot consists of
following the wall interspersed with deflections off the wall. Thus,
the target areas are visited only by chance. In the enabled condition
(Fig. 3¢c), the robot used the coloured patches to reliably locate the
areas where it had found positive reinforcement in the past, leading
to a more structured behaviour. We quantified this structure by
recasting the behaviour as a Markov process. We used an environ-
ment with two targets (see Fig. 3b, ¢, green circles) and estimated the
probabilities of the transition between pairs of CS events excluding
the yellow wall (Fig. 4 and Supplementary Information).

The disabled condition shows probabilities below 0.25 in tran-
sitions between 10 CS pairs. Most of these transitions occur in the
periphery of the environment. In the enabled condition, the
maximum transition probability increases to 0.75 for a total of 20
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wall and coloured patches are placed on the floor. The targets (coloured circles)
correspond to light sources. The trajectories displayed are those generated by the robot
during the recall period, for conditions disabled (b) and enabled (c). Red, one light source.
Green, two light sources. Blue, three light sources.

CS pairs, including colour patches in the centre of the environment.
This pattern is consistent with the trajectories observed earlier
(Fig. 3b, ). Moreover, the variability of [|AW]| was much smaller
in the enabled compared with the disabled condition consistent
with the values found in the simulation experiments: enabled
[[AW|| = 3 x 1072, disabled ||AW|| = 8 X 10~ 2. This confirms
that our results fully generalize to the real world and are robust
with respect to the details of the sensory and motor systems
employed.

To directly evaluate the effect of behavioural feedback on per-
formance, we compared the enabled condition with a separate
control condition, called ‘static’. In the static condition, the synaptic
efficacies of the adaptive layer were fixed and initialized with the
values of those of the enabled condition when the latter stored its
first LTM sequence. The static condition can still store STM and
LTM sequences but its perceptual learning system is switched off.
We found, using both simulated and real-world robots, that
performance in the static condition was strongly reduced by
comparison with the enabled condition. Moreover, its behavioural
trajectory was more variable, its D value higher and the oscillations
around 0, enhanced (see Supplementary Information for details).
This result confirms that behavioural feedback directly enhances
performance.

Although the microscopic and local view of behaviour and
perception has been questioned for being too restricted*>*, it is
unclear which other factors should be included to comprehend fully
how they are shaped through experience. The robot experiments
reported here demonstrate that learning-dependent changes in
behaviour can establish a macroscopic feedback loop. Once the
contextual layer is activated, the robot can retain and recall

NATURE | VOL 425 |9 OCTOBER 2003 | www.nature.com/nature




a Disabled

Figure 4 Quantification of the emerging behavioural structure using a hidden Markov
model. The transition probabilities between pairs of CS events are mapped on the
environment for conditions disabled (a) and enabled (b). Probabilities exceeding 0.1 are
represented by a line that connects the corresponding colour patches. Line thickness
reflects the value of the transition probability. Transitions that include the yellow
surrounding wall are omitted. The maximum value of the transition probability is 0.25 for
the disabled condition and 0.75 for the enabled condition.

successful trajectories, and it develops a habit of following mainly
these established paths. In this more restricted and therefore less
variable environment, the task of the perceptual learning system is
facilitated and biased towards behaviourally relevant sensory events.
This improved sensory classification in turn stabilizes the emerging
behavioural patterns acquired by the behavioural learning system.
Hence, non-neuronal feedback can directly contribute to the
organization of behaviour and perception, establishing a synergistic
interaction.

To what extent are our robotic results relevant to the under-
standing of the brain? One prediction of our study is that a change
in the afferent input to sensory areas, due to behavioural feedback,
can systematically change the organization of perceptual systems.
This prediction is supported by the observation that, during
development, the organization and response properties of primary
sensory areas can be strongly influenced by their afferent inputs™,
indicating that during these stages of development behavioural
feedback can have a direct impact on the organization of perceptual
systems. We expect that behavioural feedback would affect percep-
tual systems and those structures that readout from these systems,
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both during early development and beyond. The observation that
the place fields of the CAl region of the hippocampus show an
experience-dependent expansion and shift in their centre of mass in
relation to the behavioural trajectory supports this suggestion®.
Moreover, the observation that the responses in the primary
auditory cortex are attenuated during vocalization suggests that
the brain actively regulates the impact of behavioural feedback™.
Thus, we propose that the brain exploits behavioural feedback to
constrain perceptual learning and to stabilize acquired behavioural
structures.

The role of feedback internal to the neuronal systems underlying
perceptual and behavioural learning is receiving increasing atten-
tion, particularly in the context of prediction errors of stimulus
properties and rewards*>*®. Behavioural feedback modifies stimulus
sampling and so provides an additional extra-neuronal path for the
reduction of prediction errors. Our results provide direct evidence
for this assertion by demonstrating that the environmentally
mediated feedback between behaviour and perception can signifi-
cantly affect both of these processes. O

Methods

All neural elements of the DAC architecture are implemented as linear threshold units.

Reactive control

The reactive control layer implements a set of pre-wired reflexes that support basic
behaviours where low-complexity sensory events, the US, trigger immediate actions, the
UR. The relationship between the US and the UR is established through an intermediate
stage that reflects an IS, for example, aversion, (US™ — IS ™) or appetite (Ust—Is™).
US events activate neurons in IS, which in turn activate a population of motor neurons
(M), producing an avoidance or approach action (UR), respectively. Action selection is
defined by a winner-take-all mechanism in neuronal population M. Conflicts between
approach and avoidance actions are resolved by pre-wired relationships between IS
populations. If none of the IS populations is active, the reactive control layer generates
exploration behaviour, consisting of translational movements.

Adaptive control

The adaptive control layer provides mechanisms for perceptual learning and constructs
representations of complex sensory events (CS). These representations arise from the
experience-dependent changes in the efficacies of the synaptic connections between the
populations of neurons reflecting sensory events (CS) and IS. Activity in IS populations,
Ay, is defined by:

Ars = Ays + WAcs 1

where Ayg and Acs denote the activity of the US-conveying sensor and CS-driven neural
activity, respectively. W represents the synaptic efficacies of the connections between CS
and IS populations. The change of these synaptic efficacies, AW, is defined by:

AW =Ai5(Acs — YW Ars) (2)

where 7 is a learning rate, y a linear gain and W the transpose of W. Hence, AW depends
on the difference, or reconstruction error, between the actual CS state, A s, and that
predicted CS state, given the current state of IS and W, wTA 15> also referred to as the
sensory expectation, E. This learning rule is related to filtering theory and state
estimation”, and similar approaches have been applied to modelling the cortical
mechanisms of perceptual learning®. Recently, a biophysically realistic implementation of
this predictive learning rule was presented*®.

D is defined as a leaky average of the difference, d(Acs, E), between the current, Acs,
and the predicted CS state, E:

D(t+1) =1 — ap)D(t) + apd(Acs, E)(t) (3)
where o, defines the integration time constant and d(A s, E) is defined as:
IR | AcsO) EG)
dAcs, B =-S"| 2V 2V 4
(Acs, E)(1) N2 | maxdcs(G)  maxEG) 4)
=1 1=j'=N 1=j'=N

where N stands for the size of the CS population.

Contextual control

The contextual control layer provides mechanisms of STM and LTM and is enabled once
the discrepancy measure D falls below a fixed threshold, 6. This ensures that the
representations of CS events, E, used in STM and LTM are based on stable classifications
constructed by the perceptual learning system of the adaptive layer. Some key aspects of
the contextual layer are: (1) salient CS events, E, and their associated actions, M, are stored
in STM, conserving their order of occurrence. Salience is defined as the interruption of
exploration behaviour in the absence of US events. (2) The content of STM is stored in
LTM when a goal state is reached, such as finding a target. (3) The sensory content of LTM
segments is continuously matched against interpreted sensory events, E, generated by the
adaptive layer. (4) LTM segments that match E compete for behavioural control. (5) If the
best-matching segment exceeds a specific matching threshold it will control behaviour,
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provided that the reactive control layer is inactive. (6) Chaining through LTM sequences is
achieved by biasing the LTM matching process.

The competition among LTM segments takes place on a quantity m where mf of
segment [ of sequence k is defined as:

k_ kK
my = c[t) (5

where cf‘ is defined as d(E, E;‘) using the definition of d provided in equation (4). t;",
tf € [0; 1], is a dynamic threshold that provides a probabilistic mechanism for chaining
through a LTM sequence. In case segment [ of sequence k wins the competition by virtue
of having the lowest value of m, it will reduce t of segment [ + 1, of k, t§,,, to a fixed
value 3,6 € [0; 1]. t;‘ relaxes to its default value of 1 according to t;‘(t +1)=
ar+(1— a'r)t;‘(t), ar € [0;1]. The LTM segment that wins the competition will
dominate the behavioural output of the overall system when its m is below a fixed
threshold.

In the present implementation, STM is a ring buffer with a fixed length of 25 segments,
while the capacity of LTM is limited to 64 sequences.
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Individual neural progenitors generate different cell types in a
reproducible order in the retina'~, cerebral cortex* and prob-
ably in the spinal cord’. It is unknown how neural progenitors
change over time to generate different cell types. It has been
proposed that progenitors undergo progressive restriction® or
transit through distinct competence states™'’; however, the
underlying molecular mechanisms remain unclear. Here we
investigate neural progenitor competence and temporal identity
using an in vivo genetic system—Drosophila neuroblasts—where
the Hunchback transcription factor is necessary and sufficient to
specify early-born cell types''. We show that neuroblasts gradu-
ally lose competence to generate early-born fates in response to
Hunchback, similar to progressive restriction models®, and that
competence to acquire early-born fates is present in mitotic
precursors but is lost in post-mitotic neurons. These results
match those observed in vertebrate systems, and establish Droso-
phila neuroblasts as a model system for the molecular genetic
analysis of neural progenitor competence and plasticity.

Despite substantial progress in vertebrates, we still know little
about the molecular basis for how a single neural precursor
sequentially generates different cell types. This is primarily due to
the lack of an in vivo model system where a single neural progenitor
can be studied at reproducible times during its lineage. The
Drosophila embryonic central nervous system (CNS) lends itself
well to the study of neural progenitor plasticity because neural
progenitors (neuroblasts (NBs)) can be individually identified, each
NB generates different cell types in a reproducible order, molecular
markers exist for each of these cell types, intrinsic factors are known
that confer different temporal identities, and gene expression can be
readily manipulated at specific points within the NB lineage''. NBs
repeatedly divide in a stem-cell-like mode to ‘bud off” a series of
smaller daughter cells called ganglion mother cells (GMCs). Cell
lineage studies show that every GMC has a unique identity based on
its ‘birth’ order within the NB lineage, and generates a characteristic
pair of neurons or glia. Recently, four transcription factors have
been identified that are excellent candidates for specifying GMC
temporal identity'"'">. NBs sequentially express the transcription
factors Hunchback (Hb)—Kriippel=Pdml—Castor, with GMCs
inheriting the transcription-factor profile of the parental NB on
their generation, which is then maintained in their own neuronal
progeny (Fig. 1)'". hb is both necessary and sufficient for specifying
the first-born temporal identities in multiple NB lineages, even
though first-born cells can be motor neurons, interneurons, or
glia''. Here we manipulate the timing and levels of Hb in a model
NB lineage (NB7-1) to ask two fundamental questions: when does a
NB lose competence to generate first-born neurons (immediately
after Hb downregulation, progressively during its lineage, or never)?
And when during neuronal differentiation is competence to gen-
erate first-born neurons lost (in NBs, GMCs, or post-mitotic
neurons)?

To assay changes of temporal identity within a single lineage, we
precisely define the birth order and sibling relationships of the early
NB7-1 lineage. NB7-1 generates five motor neurons (U1-U5) and
about 30 interneurons'>'. The five U motor neurons have stereo-
typed positions in the CNS (Fig. 1a), express the Even-skipped (Eve)
transcription factor (Fig. 2a), and innervate specific body wall
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