Skip to main content

Explore the credit course catalogue

8 Results

The purpose of this course is to enable doctoral students and other participants to gain an understanding of the major neuroinflammatory diseases and the key players involved, including the interaction between the central nervous and immune systems. An additional purpose is that those who participate in the course learn to understand critical aspects of creating and using experimental systems to model neuroinflammatory diseases.

The course is offered full time, Monday-Friday, 9:00-17:00 at the Center for Molecular Medicine (CMM) on Karolinska University Hospital, campus Solna, building L8, lecture hall and seminar rooms.

This course is given jointly by the doctoral programmes Allergy, immunology and inflammation (Aii) and Neuroscience (Neuro

Course - 1.5 ECTS

Developmental biology lies at the heart of an effort to understanding complex biological systems. By studying how neural circuits are assembled we can extrapolate key aspects of their function as well as devise strategies for their repair. This course is given to deepen the understanding of how molecular and cellular mechanisms underlie neurobiological function and to widen the horizon of students within the strong Karolinska neuroscience community.

The course is given in collaboration with the Master's Programme in Biomedicine.

This is a full time course given in person at Biomedicum, Campus Solna.

Link to course evaluation

https://survey.ki.se/Report/5biVHpOK5wg

Course - 1.5 ECTS

Experimental neuroscience is key to progress in the understanding of how the brain functions. The experimental toolbox for studies in rodents is currently without comparison, allowing detailed investigation of how the brain is built and the function of brain circuits. Technological advances also make it possible to directly connect neurons and circuits to behaviour. 

In the Brain Circuits course, students will meet international and KI neuroscientists who have made significant contributions to the study and understanding of neuronal circuits and behaviour. The development and application of novel technologies and analysis (high-density electrophysiology and imaging of single-neuron activity, optogenetics, behavioural tracking, machine learning etc) will be covered, with a focus on advances using transgenic rodents. We have a strong emphasis on engaging junior neuroscientists in the course and on creating a network for future neuroscience leaders.

This course is given in collaboration with the Master's Programme in Biomedicine.

Course - 1.5 ECTS

Our MATLAB-based comprehensive course is designed to equip you with the essential knowledge and practical skills to delve into biomedical image processing, specifically tailored for biological/medical and neuroimaging applications using MATLAB.

Course - 1.5 ECTS

This seminar focuses on the increasing importance of Artificial Intelligence (AI) in academic research and writing, providing practical insights into AI technologies; use in these areas.The workshop explores ChatGPT and prompt engineering, as well as other academic AI tools to aid research and writing, examining both benefits and challenges. Ethical aspects, such as copyright and authenticity of research results, are discussed, with the goal of equipping participants with practical knowledge and skills to effectively utilize AI in daily research through interactive elements like case studies and group discussions.

Course - Certificate of attendance, for Bonn members: 8 units are applicable within the Doctorate plus and Careers plus certificates ECTS

The course is practical and aims at teaching students how to:

  • Use the programming environment R and RStudio, which includes installation, how to handle errors, problem solve and access helper documents.
  • Use basic concepts of programming, such as data types, logical and arithmetic operators, if else conditions, loops and functions.
  • Use common R packages to perform basic statistical analysis (e.g., t-test, chi2-test, correlation) and visual presentation (e.g., boxplot, histogram and heat-map) of data in R.

The course is structured with the intent to gradually make students more autonomous in writing code. Starting by introducing a concept through a lecture, then providing formative quizzes and tasks relateed to the concept. This all leads up to a project (exam) where the student gets to combine multiple concepts into a project with the intent of solving a certain problem or displaying specific statistical tests of visual components. 

 

Course - 3.0 ECTS

Do you need to turn data into a publication figure? We offer tools and confidence for the student to independently select a statistical method for research questions in their field. The course is practical and includes implementing a basic statistical analysis in R, the leading statistical programming language in bioinformatics and medical science. Furthermore, we give a brief introduction to visualization in R, with a focus on R/ggplot2. Students can bring data from their own research project, or work on data from the course.

Course - 3.0 ECTS

Topics covered include:

  • Coding: theory, practical training, coding styles, unit testing
  • Collaborative software development workflows
  • Data analytics workflows
  • (Generalised) linear mixed effects models
  • Bayesian statistics
  • Data visualisation
  • Workflow automation
  • Meta-science
Course - 15 ECTS