Explore the credit course catalogue
10 Results
This intensive blended learning course equips PhD researchers with the entrepreneurial mindset, skills, and tools needed to transform scientific discoveries into viable innovations and ventures. The course combines online pre-work with a hands-on, 5-day lecture and workshop series (10-14th of November) and aims to give students and researchers an overview about entrepreneurship as well as common business tools and strategies, to be able to assess the commercialization potential of a scientific idea and to develop solutions towards market needs. Topics include:
- Bringing Scientific Inventions and Research Ideas to Market
- Entrepreneurship in all its Facets
- Designing for Demand / Lean Canvas
- Business Strategies and Models
- Effectuation and Design Thinking
- Intellectual Property
- Financing and Funding Strategies
- Ethics and Regulatory Frameworks
- Risk Management and Mitigation
- Networking, Collaboration and Pitching
Through lectures, interactive workshops, peer collaboration, expert mentoring, and real-world case studies, researchers will learn how to identify opportunities, mobilize resources, and create value (financial, societal and/or cultural). Students will work in groups on three assignments: Lean Canvas, a report detailing Lean Canvas findings and assumptions and a slide deck for final presentations.
To register, contact:
Contact your local NTEU project manager
Instructors:
Ásgeir Jónsson – asgeirjo@ru.is
Hallur Þór Sigurðarson – hallursig@ru.is
Susanne Durst – susanned@ru.is
This course aims to equip students with a broad understanding of digital health, emphasizing not only technical skills but also ethical considerations and critical thinking when designing, developing, and implementing digital tools in healthcare settings. The main objective is to set the stage for digital health, in general, and to understand the impact of design, development, and use of digital tools within healthcare settings for optimization purposes, in particular. By the end of the course, the students will be able to illustrate introductory knowledge of digital health, encompassing design, development, and utilization of digital tools in healthcare settings, as demonstrated by their assignment, where the focus is to design a mobile application for a specific case as well as reflect on the ethical implications of working with artificial intelligence as an embedded part of healthcare.
The course instructor is Dr. Anna Sigridur Islind, a professor at the department of computer science at Reykjavik University.
To register, contact: islind@ru.is

The purpose of this course is to enable doctoral students and other participants to gain an understanding of the major neuroinflammatory diseases and the key players involved, including the interaction between the central nervous and immune systems. An additional purpose is that those who participate in the course learn to understand critical aspects of creating and using experimental systems to model neuroinflammatory diseases.
The course is offered full time, Monday-Friday, 9:00-17:00 at the Center for Molecular Medicine (CMM) on Karolinska University Hospital, campus Solna, building L8, lecture hall and seminar rooms.
This course is given jointly by the doctoral programmes Allergy, immunology and inflammation (Aii) and Neuroscience (Neuro

Developmental biology lies at the heart of an effort to understanding complex biological systems. By studying how neural circuits are assembled we can extrapolate key aspects of their function as well as devise strategies for their repair. This course is given to deepen the understanding of how molecular and cellular mechanisms underlie neurobiological function and to widen the horizon of students within the strong Karolinska neuroscience community.
The course is given in collaboration with the Master's Programme in Biomedicine.
This is a full time course given in person at Biomedicum, Campus Solna.
Link to course evaluation
https://survey.ki.se/Report/5biVHpOK5wg

Experimental neuroscience is key to progress in the understanding of how the brain functions. The experimental toolbox for studies in rodents is currently without comparison, allowing detailed investigation of how the brain is built and the function of brain circuits. Technological advances also make it possible to directly connect neurons and circuits to behaviour.
In the Brain Circuits course, students will meet international and KI neuroscientists who have made significant contributions to the study and understanding of neuronal circuits and behaviour. The development and application of novel technologies and analysis (high-density electrophysiology and imaging of single-neuron activity, optogenetics, behavioural tracking, machine learning etc) will be covered, with a focus on advances using transgenic rodents. We have a strong emphasis on engaging junior neuroscientists in the course and on creating a network for future neuroscience leaders.
This course is given in collaboration with the Master's Programme in Biomedicine.

The purpose of the course is for participants to gain knowledge concerning genetics, molecular mechanisms as well as clinical features and treatment strategies of neurodegenerative disorders.
This course is given in collaboration with the Master's Programme in Biomedicine.

This workshop provides a hands-on learning experience with a focus on a wider variety of AI tools, their ethical implications and their practical applications. The aim is to facilitate the responsible and efficient use of AI-based tools in research and academia.
Content:
- Understand the importance of using AI in research and academia and assess the benefits and risks involved
- Craft effective prompts for your research tasks
- Develop strategies to integrate AI tools into your research workflow
- Stay informed about and adapt to new developments in the field of AI
At the end of the workshop, you will receive a list of generative AI prompts useful in research and academia. There will be practice sessions during the workshop for which you will need access to AI tools, particularly ChatGPT/GPT-4o. If you do not have an account with ChatGPT/GPT-4o, alternatives like Microsoft Copilot, Google Bard or Claude.ai could also be used.

This course provides a solid ground in neuroscience, including cellular neuroscience, sensory and motor functions, and higher brain functions. It is intended for those lacking a basic neuroscience education. It runs in parallel with the Neuroscince course of the Bachelors programme in biomedicine. The course does not give regular course credits for doctoral students, but can be used to cover the demand of a grounding course in human physiology/pathology.

This course covers the concepts of:
- Mechanisms of axonal transport, neuronal cytoskeleton, neurite outgrowth, extracellular matrix, neurotrophic factors
- Mechanisms of synaptic transmission, vesicles, Snare’s, structure, synthesis and inactivation of neurotransmitters, neurotransmitterreceptors, signal transduction pathways; Pre and post synaptic signal modification
- Specific features of non-neuronal cells astrocytes, oligodendrocytes, microglia, Composition, synthesis and function of myelin, biochemistry and function of astrocytes and microglia; Pathobiochemistry of Alzheimer disease, prion diseases, leukodystrophies, polyglutamin diseases and multiple sclerosis

The course aims to introduce students to human sensory perception with a focus on clinical utility and research. The neurological and evolutionary principles underlying vision, hearing, smell, taste, touch, and additional methods of perception will be covered.
The course will introduce the historical and evolutionary context for our senses, so as to provide an understanding for why humans operate and behave the way we do. Beyond the traditional five senses of vision, hearing, taste, smell, and touch, we will discuss several other sensory modalities available to humans, including the vestibular system. The neurological principles guiding the integration of these senses will be outlined, with special reference to subconscious and conscious decision-making. These systems will then be tested through a series of practical experiments, giving students a chance to reflect on blind-spots in human perception and how to implement these in a scientific and clinical setting. Finally, common sensory pathologies will be discussed.