Skip to main content

Explore the credit course catalogue

50 Results

Topics covered include:

  • Basics of monolayer glioblastoma cell culturing
  • Generation and culturing of human glioblastoma organoids
  • Immunochemistry, Western Blot, DNA/RNA isolation
  • Flow cytometry analysis of cell death and cell viability assays
  • Live-cell imaging and morphology analysis
  • Data analysis including statistics using ImageJ, FlowJo, GraphPad PRISM
  • Visualization of results using Microsoft Excel/Powerpoint or Adobe illustrator
Course - 15 ECTS

Topics covered include:

  • Hearing and speech perception and associated disorders (e.g., hearing loss, deafness, tinnitus)
  • Vestibular function and associated disorders
  • Objective electrophysiological measures: auditory and/or vestibular evoked responses (ECochG, BERA, ASSR, CERA, VEMP)
  • Behavioural experiments (psychoacoustics)
  • Principles of hearing rehabilitation with neural prostheses, i.e., cochlear implants
  • Research methods in audiology/auditory neuroscience
  • Application of methodology (in patients, if possible)
  • How to design and conduct research projects
Course - 15 ECTS

Topics covered include:

  • Experimental design strategies
  • Fluorescent immuno-histochemistry
  • Confocal Microscopy
  • Intra-vital Microscopy (e.g. two-photon, three-photon, 2P-STED, ...)
  • Data analysis
  • Behaviour
Course - 15 ECTS

Topics coverd include:

  • Vascular Biology and organotypic properties
  • How to investigate blood vessels in the CNS
  • Isolation of blood vessels and endothelial cells from the mouse CNS
  • Endothelial cell tube formation assay
  • Co-culture of endothelial cells and pericytes in 3D
  • In vitro blood brain barrier assay
Course - 15 ECTS

Topics covered include:

  • Tissue isolation and cryosectioning
  • Immunofluorescent staining/Western blots
  • Tissue isolation and cryosectioning
  • Imaging (e.g. Confocal microscopy, Slide scanner etc.)
  • (Semi-) automated image anaylsis (e.g. Fiji, machine learning based analysis)
Course - 15 ECTS

Topics covered include:

  • CRISPR/Cas9 mediated genome editing in mammalian cell lines
  • CRISPRoff genome editing tools to modify activity of gene promoters
  • Cloning of promoter regions and relevant proteins into reporter gene and mammalian expression vectors
  • Reporter gene assays to measure activity of gene promoters or unknown DNA sequences using plate luminometer
  • Chemical modification of genomic DNA for DNA methylation analysis
  • Pyrosequencing for detection and quantification of DNA methylation
  • Chromatin preparation and chromatin immunoprecipitation analysis
  • Standard PCR and quantitative reverse transcription PCR analysis
  • Transfection and expression of relevant proteins in mammalian cells
  • Western blotting for protein analysis
Course - 15 ECTS

Topics covered include:

  • rAAV-guided engram labeling techniques (Cal-Light, SomCal-Light, FLARE)
  • Tissue engineering (FluoClearBABB, ExM)
  • Large-field superresolution microscopy
  • AI-guided behavioral classification
  • Multifactorial behavioral classification
Course - 15 ECTS

Topics covered include:

  • Deep brain imaging using single- and two-photon imaging techniques
  • Miniature microscope recordings in freely moving animals
  • Combined all-optical imaging and optogenetic tools
  • Large scale neural population analysis using data science and machine learning techniques
  • Behavioural phenotyping using markerless pose estimation
  • Scientific programming using Python
Course - 15 ECTS

Topics covered include:

  • Histological preparation of rodent sensory organs
  • Immunohistochemistry on mole-rat and mouse neuronal tissues
  • 3D histology using tissue clearing
  • Fluorescence microscopy, Light sheet microscopy
  • Behavioural assessment of magnetic orientation under controlled conditions
Course - 15 ECTS

Topics covered include:

  • Cellular resolution fluorescent in vivo imaging (mouse model)
  • Histological analysis of post-encephalitic brain tissue changes
  • Field electrophysiology (in vivo, in vitro)
  • Patch-clamp cellular recordings (in vitro)
  • Targeted light-based circuit interference, light-activated antiepileptic drugs
Course - 15 ECTS

This module is dedicated to understanding and investigating how small molecular modulators can be used to specifically target prominent metabolic pathways using the mouse as an experimental animal model. Attendees will be introduced to murine animal handling, murine primary adipocyte isolation and in vivo, ex vivo and in vitro pharmacological experimentation with the model system. The practical work will be supported by institute seminars covering, among other, signal transduction metabolism and pharmacology.

Course - 15 ECTS

Topics covered include:

  • Assessment of memory and imagination in patients with neurodegenerative dementias and related to aphantasia
  • Rating of patients’ memory reports
  • Analysis of patient data
  • Writing summary reports
Course - 15 ECTS

The lab-based practical part of the course will cover methods used to tackle questions in the research area outlined above, such as cell culture, microscopy, tissue dissociation and processing of tissue samples, MACS and FACS-based cell analysis and separation, cell transfection, cell genome engineering, transgene expression, cellular
assays, protein and gene expression analyses etc. In addition to the practical part, students will attend lectures and seminars.

Course - 15 ECTS

Topics covered include:

  • animal models to study epileptogenesis
  • *omics analyses of human epileptic specimen
  • Screening analyses for classical auto-antibodies and new candidates inpatients suspicious for limbic encephalitis
  • Analyzing the functional role of patient-derived auto-antibodies in epilepsy in vitro und in vivo
  • Analyzing synchronous network activity in vitro (multi electrode array; MEA)
  • CrispR-Cas systems to interfere with epileptogenesis
  • Generation of animal models to study limbic encephalitis
  • Neuropathology in experimental LE
Course - 15 ECTS

Topics covered include:

  • Basic protein-biochemical methods (protein-protein interactions, Western Blotting
  • Processing of human samples for protein detection
  • Basic cloning techniques and CRISPR
  • Cell culture work with primary cells and cell lines
Course - 15 ECTS

Topics covered include:

  • Diversity of neuronal cell types and approaches to cell type classification
  • Experimental design to dissect the functional contribution of diverse neuronal cell types to behaviour
  • Stereotaxic surgeries and cell type-specific targeting with viral vectors in transgenic mice
  • Deep-brain imaging at the single-cell level using miniature microscopes in freely-moving mice and 2-photon recordings in head-fixed animals
  • All-optical interrogation of neural circuits with combined imaging and optogenetic approaches
  • Introduction to analysis of deep-brain imaging data
Course - 15 ECTS

Topics covered include:

  • Hypothesis driven planning and design of experiments for research project
  • Cloning, colony cracking and transfection
  • Cell culture and life cell imaging
  • Imaging and data analysis
  • Application of techniques depend on individual working plan
Course - 15 ECTS

Topics covered include:

  • How to design, code (C#, Unity) and conduct virtual reality experiments
  • How to record, time-sync and real-time access physiological data streams during virtual reality experiments (based on LabStreamingLayer)
  • How to analyse psychophysiological data (e.g.: wireless EEG, EMG, EDA, HRV or Eyetracking), using common Matlab-packages such as EEGLAB or LEDALAB
Course - 15 ECTS

Topics include:

  • Free swimming and restrained behavioural recording
  • Multiphoton neuronal population imaging
  • 3D electron microscopy preparation and collection
  • Time series analysis and machine learning-based image segmentation
Course - 15 ECTS

Topics covered inlude:

  • Cognitive neuroscience of social perception and cognition
  • Dysfunctions of social perception and cognition
  • Research methods in social neuroscience (signal detection theory; metacognition; experimental psychology; classification methods)
  • Experimental design
Course - 15 ECTS

Students will have the opportunity to:

  • work with various model systems (e.g. different cell lines, C. elegans and tissue from transgenic mice
  • perform different biochemical analysis assays (e.g. Western blot, RT-PCR) 
  • immunohistechemical stainings and confocal imaging

In addition to hands-on practical methods, students will attend scientific lectures and seminars.

Course - 15 ECTS

Topics covered include:

  • Handling of adult and larvae zebrafish. Manual Morpholino® (MO) injections into fertilized fish eggs
  • Fluorescent in vivo microscopy of transgenic larvae zebrafish
  • Different screenings (behavior/development/expression)
  • Documentation and analysis of treated fish larvae (≤ 5 dpf) and their controls
Course - 15 ECTS

Topics covered include:

  • Basic fluorescence microscopy
  • Fluorescence lifetime imaging (FLIM), 2P excitation
  • Fluorescence resonance energy transfer (FRET)
  • Stochastic optical reconstruction microscopy (d-STORM)
  • 3D-Electron microscopy, focused-ion beam (FIB) milling and scanning EM, specimen preparation and embedding.
Course - 15 ECTS

This course covers structural analysis of the hypothalamic visual relay system across actinoptrygian fishes.

Course - 15 ECTS

Topics covered include:

  • mechanisms of neuron-astrocyte signal exchange in the hippocampus and their relevance for synaptic transmission and its plasticity, for hippocampus-dependent cognitive processes and behaviors such as spatial navigation
  • research methods will be selected from:
    • multiphoton fluorescence imaging and its applications for studying astrocyte/neuron signaling (e.g. Ca2+ imaging) and structural plasticity
    • advanced imaging techniques of optical indicators (e.g. FRET, FLIM) and indicator development (e.g. in HEK cells, acute brain slices)
    • electrophysiological methods like the patch clamp technique
    • super-resolution microscopy (expansion microscopy)
    • introduction to behavioral analyses (e.g. spatial memory, machine-learning based analysis)
Course - 15 ECTS

Topics covered include:

  • Principles of optogenetic Actuators
  • Cell-type specific expression techniques for optogenetic actuators
  • Technologies to achieve light-based optogenetic Stimulation in-vitro and in-vivo
  • Combination of optogenetic techniques with patch-clamp techniques
Course - 15 ECTS

Topics covered include:

  • Mouse model of temporal lobe epilepsy
  • Patch clamp analysis and single cell RT-PCR
  • Analysis of gap junction-mediated astrocyte coupling by tracer diffusion assays
  • Analysis of seizure activity by EEG and video monitoring
  • Immunoblot analysis and Real-Time PCR
  • Immunohistochemical staining and confocal microscopy
Course - 15 ECTS

Topics covered include:

  • chemical modification of genomic DNA
  • assay design for targeted DNA methylation analysis
  • pyrosequencing for detection of DNA methylation
  • histological analyses of epigenetic modifications on histones and DNA
  • functional cell assays
  • glioma cell culture
Course - 15 ECTS

Topics covered include:

  • DNA isolation from human tissues
  • Detection of mtDNA mutations in human samples by various PCR-based techniques
  • Detection and quantification of multiple mtDNA deletion by single-molecule PCR
  • mtDNA sequencing and deletion mapping
Course - 15 ECTS

Topics covered include:

  • Cloning of relevant proteins into mammalian and bacterial expression vectors
  • Expression of relevant proteins in mammalian and bacterial cell culture systems (Transfection, viral transduction)
  • Protein extraction from mammalian and bacterial cells
  • Protein analysis - western immunoblotting, analysis of protein-protein interactions
  • Analysis with immunocytochemical techniques – microscopy
  • Live cell imaging
Course - 15 ECTS